Skip to main content
Log in

Effect of Carrier Gas Properties on Aerosol Distribution in a CT-based Human Airway Numerical Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The effect of carrier gas properties on particle transport in the human lung is investigated numerically in an imaging based airway model. The airway model consists of multi-detector row computed tomography (MDCT)-based upper and intra-thoracic central airways. The large-eddy simulation technique is adopted for simulation of transitional and turbulent flows. The image-registration-derived boundary condition is employed to match regional ventilation of the whole lung. Four different carrier gases of helium (He), a helium–oxygen mixture (He–O2), air, and a xenon–oxygen mixture (Xe–O2) are considered. A steady inspiratory flow rate of 342 mL/s is imposed at the mouthpiece inlet to mimic aerosol delivery on inspiration, resulting in the Reynolds number at the trachea of Re t  ≈ 190, 460, 1300, and 2800 for the respective gases of He, He–O2, air, and Xe–O2. Thus, the flow for the He case is laminar, transitional for He–O2, and turbulent for air and Xe–O2. The instantaneous and time-averaged flow fields and the laminar/transitional/turbulent characteristics resulting from the four gases are discussed. With increasing Re t , the high-speed jet formed at the glottal constriction is more dispersed around the peripheral region of the jet and its length becomes shorter. In the laminar flow the distribution of 2.5-μm particles in the central airways depends on the particle release location at the mouthpiece inlet, whereas in the turbulent flow the particles are well mixed before reaching the first bifurcation and their distribution is strongly correlated with regional ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Balachandar, S., and J. K. Eaton. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–133, 2010.

    Article  Google Scholar 

  2. Bennett, W. D. Targeting respiratory drug delivery with aerosol boluses. J. Aerosol Med. 4:69–78, 1991.

    Article  Google Scholar 

  3. Chan, T. L., and M. Lippmann. Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41:399–409, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Choi, J., G. Xia, M. H. Tawhai, E. A. Hoffman, and C. L. Lin. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model. Ann. Biomed. Eng. 38(12):3550–71, 2010.

    Article  PubMed  Google Scholar 

  5. Corcoran, T. E., and S. Gamard. Development of aerosol drug delivery with helium oxygen gas mixtures. J. Aerosol Med. 17:299–309, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Crompton, G. K. Problems patients have using pressurized aerosol inhalers. Eur. J. Respir. Dis. Suppl. 119:101–104, 1982.

    PubMed  CAS  Google Scholar 

  7. Darquenne, C., C. van Ertbruggen, and G. K. Prisk. Convective flow dominates aerosol delivery to the lung segments. J. Appl. Physiol. 111:48, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Dekker, E. Transition between laminar and turbulent flow in human trachea. J. Appl. Physiol. 16:1060, 1961.

    PubMed  CAS  Google Scholar 

  9. Donovan, M. J., A. Gibbons, M. J. Herpin, S. Marek, S. L. McGill, and H. D. C. Smyth. Novel dry powder inhaler particle-dispersion systems. Ther. Deliv. 2:1295–1311, 2011.

    Article  CAS  Google Scholar 

  10. Finlay, W. H. The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Academic Press, London, 2001.

  11. Gauderman, W. J., E. Avol, F. Gilliland, H. Vora, D. Thomas, K. Berhane, R. McConnell, N. Kuenzli, F. Lurmann, and E. Rappaport. The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 351:1057–1067, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Gauderman, W. J., C. Murcray, F. Gilliland, and D. V. Conti. Testing association between disease and multiple SNPs in a candidate gene. Genet. Epidemiol. 31:383–395, 2007.

    Article  PubMed  Google Scholar 

  13. Gosman, A. D., and E. Ioannides. Aspects of computer simulation of liquid-fuelled combustors. J. Energy 7:482–490, 1983.

    Article  Google Scholar 

  14. Grgic, B., W. H. Finlay, P. K. P. Burnell, and A. F. Heenan. In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J. Aerosol Sci. 35:1025–1040, 2004.

    Article  CAS  Google Scholar 

  15. Heyder, J., J. Gebhart, G. Rudolf, C. F. Schiller, and W. Stahlhofen. Deposition of particles in the human respiratory tract in the size range 0.005–15 [mu] m. J. Aerosol Sci. 17:811–825, 1986.

    Article  Google Scholar 

  16. Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: Wiley, 1982.

  17. Horsfield, K., G. Dart, D. E. Olson, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31:207, 1971.

    PubMed  CAS  Google Scholar 

  18. Jayaraju, S. T., M. Brouns, C. Lacor, B. Belkassem, and S. Verbanck. Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat. J. Aerosol Sci. 39:862–875, 2008.

    Article  CAS  Google Scholar 

  19. Kleinstreuer, C., and Z. Zhang. Laminar-to-turbulent fluid-particle flows in a human airway model. Int. J. Multiphase Flow 29:271–289, 2003.

    Article  CAS  Google Scholar 

  20. Lambert, A. R., P. T. O’shaughnessy, M. H. Tawhai, E. A. Hoffman, and C. L. Lin. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci. Technol. 45:11–25, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Lin, C. L., M. H. Tawhai, G. McLennan, and E. A. Hoffman. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Resp. Physiol. Neurobiol. 157:295–309, 2007.

    Article  Google Scholar 

  22. Lippmann, M., D. B. Yeates, and R. E. Albert. Deposition, retention, and clearance of inhaled particles. Br. J. Ind. Med. 37:337, 1980.

    PubMed  CAS  Google Scholar 

  23. Ma, B., and K. R. Lutchen. CFD simulation of aerosol deposition in an anatomically based human large–medium airway model. Ann. Biomed. Eng. 37:271–285, 2009.

    Article  PubMed  Google Scholar 

  24. Martonen, T. Mathematical model for the selective deposition of inhaled pharmaceuticals. J. Pharm. Sci. 82:1191–1199, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Morsi, S. A., and A. J. Alexander. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55:193–208, 1972.

    Article  Google Scholar 

  26. Ross, D. L., and R. K. Schultz. Effect of inhalation flow rate on the dosing characteristics of dry powder inhaler (DPI) and metered dose inhaler (MDI) products. J. Aerosol Med. 9:215–226, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Sandeau, J., I. Katz, R. Fodil, B. Louis, G. Apiou-Sbirlea, G. Caillibotte, and D. Isabey. CFD simulation of particle deposition in a reconstructed human oral extrathoracic airway for air and helium-oxygen mixtures. J. Aerosol Sci. 41:281–294, 2010.

    Article  CAS  Google Scholar 

  28. Son, Y. J., and J. T. McConville. Advancements in dry powder delivery to the lung. Drug Dev. Ind. Pharm. 34:948–959, 2008.

    Article  PubMed  CAS  Google Scholar 

  29. Stahlhofen, W., G. Rudolf, and A. C. James. Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 2:285–308, 1989.

    Article  Google Scholar 

  30. Subramaniam, R. P., B. Asgharian, J. I. Freijer, F. J. Miller, and S. Anjilvel. Analysis of lobar differences in particle deposition in the human lung. Inhal. Toxicol. 15:1–21, 2003.

    Article  PubMed  CAS  Google Scholar 

  31. Tawhai, M. H., P. Hunter, J. Tschirren, J. Reinhardt, G. McLennan, and E. A. Hoffman. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97:2310, 2004.

    Article  PubMed  Google Scholar 

  32. van Ertbruggen, C., C. Hirsch, and M. Paiva. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. J. Appl. Physiol. 98:970, 2005.

    Article  PubMed  Google Scholar 

  33. Vreman, A. W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16:3670, 2004.

    Article  CAS  Google Scholar 

  34. Wall, W. A., and T. Rabczuk. Fluid–structure interaction in lower airways of CT-based lung geometries. Int. J. Numer. Methods Fluids 57:653–675, 2008.

    Article  Google Scholar 

  35. Weibel, E. R. Morphometry of the human lung. Anesthesiology 26:367, 1965.

    Article  Google Scholar 

  36. Yin, Y., J. Choi, E. A. Hoffman, M. H. Tawhai, and C. L. Lin. Simulation of pulmonary air flow with a subject-specific boundary condition. J. Biomech. 43:2159–2163, 2010.

    Article  PubMed  Google Scholar 

  37. Zhou, Y., and Y. S. Cheng. Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci. Technol. 39:492–500, 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants R01-HL094315, R01-HL064368, R01-EB005823, and S10-RR022421. The authors are grateful to Youbing Yin, Jiwoong Choi, and Haribalan Kumar for generating meshes and CT images of the airway model, assisting with the flow simulation, and assisting with the particle simulation respectively. We also thank the San Diego Supercomputer Center (SDSC), the Texas Advanced Computing Center (TACC), and XSEDE sponsored by the National Science Foundation for the computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Long Lin.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyawaki, S., Tawhai, M.H., Hoffman, E.A. et al. Effect of Carrier Gas Properties on Aerosol Distribution in a CT-based Human Airway Numerical Model. Ann Biomed Eng 40, 1495–1507 (2012). https://doi.org/10.1007/s10439-011-0503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0503-2

Keywords

Navigation