Skip to main content
Log in

A Numerical Study of Water Loss Rate Distributions in MDCT-Based Human Airway Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics methods are applied to study regional water loss in three multi-detector row computed-tomography-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ *) by the non-dimensional mass transfer coefficient (h *0 ) as \({h_0}^{*}= 1.15{\tau ^{*0.272}}, R = 0.842\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bell, S. C., M. J. Saunders, J. S. Elborn, and D. J. Shale. Resting energy expenditure and oxygen cost of breathing in patients with cystic fibrosis. Thorax 51:126–131, 1996.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Boucher, R. C. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu. Rev. Med. 58:157–170, 2007.

    Article  CAS  PubMed  Google Scholar 

  3. Burki, N. K. Ventilatory effects of doxapram in conscious human subjects. Chest 85:600–604, 1984.

    Article  CAS  PubMed  Google Scholar 

  4. Castro, M., S. B. Fain, E. A. Hoffman, D. S. Gierada, S. C. Erzurum, and S. Wenzel. Lung imaging in asthmatic patients: the picture is clearer. J. Allergy Clin. Immunol. 128:467–478, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Choi, S., E. A. Hoffman, S. E. Wenzel, M. H. Tawhai, Y. Yin, M. Castro, and C.-L. Lin. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics. J. Appl. Physiol. 115:730–742, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Daviskas, E., I. Gonda, and S. D. Anderson. Local airway heat and water vapour losses. Respir. Physiol. 84:115–132, 1991.

    Article  CAS  PubMed  Google Scholar 

  7. Feng, Y., C. Kleinstreuer, and A. Rostami. Evaporation and condensation of multicomponent electronic cigarette droplets and conventional cigarette smoke particles in an idealized G3–G6 triple bifurcating unit. J. Aerosol Sci. 80:58–74, 2015.

    Article  CAS  Google Scholar 

  8. Ferron, G. A., B. Haider, and W. G. Kreyling. Inhalation of salt aerosol particles—i. Estimation of the temperature and relative humidity of the air in the human upper airways. J. Aerosol Sci. 19:343–363, 1988.

    Article  Google Scholar 

  9. Freund, B. J., and A. J. Young. Environmental influence on body fluid balance during exercise: cold exposure. Massachusetts: US Army Research Institute of Environmental Medicine Natick, 1995.

    Google Scholar 

  10. Hasan, A. Understanding mechanical ventilation: a practical handbook. London: Springer, 2010.

    Book  Google Scholar 

  11. Kays, W. M., and M. E. Crawford. Convective heat and mass transfer. New York: McGraw-Hill, 1993.

    Google Scholar 

  12. Kim, J. W., J. Xi, and X. A. Si. Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child. Int. J. Numer. Methods Biomed. Eng. 29:17–39, 2013.

    Article  Google Scholar 

  13. Lin, C.-L., M. H. Tawhai, and E. A. Hoffman. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. Wiley Interdiscip. Rev. Syst. Biol. Med. 5:643–655, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lin, C.-L., M. H. Tawhai, G. McLennan, and E. A. Hoffman. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157:295–309, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lin, C., M. H. Tawhai, G. McLennan, and E. A. Hoffman. Computational fluid dynamics. IEEE Eng. Med. Biol. Mag. 28:25–33, 2009.

    CAS  PubMed  Google Scholar 

  16. McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans. J. Appl. Physiol. 58:564–570, 1985.

    Article  PubMed  Google Scholar 

  17. Morvay, Z., and D. Gvozdenac. Applied industrial energy and environmental management. Chichester: Wiley, 2008.

    Book  Google Scholar 

  18. Miyawaki, S., M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. A numerical study of correlation between aerosol deposition and airway skeleton of severe asthmatics. D52. Gas exchange in steady state, altitude, and exercise, San Diego: American Thoracic Society, 2014, pp. A6281–A6281.

    Google Scholar 

  19. Tabka, Z., A. B. Jebria, and H. Guénard. Effect of breathing dry warm air on respiratory water loss at rest and during exercise. Respir. Physiol. 67:115–125, 1987.

    Article  CAS  PubMed  Google Scholar 

  20. Tarran, R., B. Button, M. Picher, A. M. Paradiso, C. M. Ribeiro, E. R. Lazarowski, L. Zhang, P. L. Collins, R. J. Pickles, J. J. Fredberg, and R. C. Boucher. Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J. Biol. Chem. 280:35751–35759, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tawhai, M. H., and P. J. Hunter. Modeling water vapor and heat transfer in the normal and the intubated airways. Ann. Biomed. Eng. 32:609–622, 2004.

    Article  PubMed  Google Scholar 

  22. Tawhai, M. H., P. Hunter, J. Tschirren, J. Reinhardt, G. McLennan, and E. A. Hoffman. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97:2310–2321, 2004.

    Article  PubMed  Google Scholar 

  23. Venegas, J. G., T. Winkler, G. Musch, M. F. Vidal Melo, D. Layfield, N. Tgavalekos, A. J. Fischman, R. J. Callahan, G. Bellani, and R. Scott Harris. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434:777–782, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Vreman, A. W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16:3670, 2004.

    Article  CAS  Google Scholar 

  25. Warren, N. J., E. J. Crampin, and M. H. Tawhai. The role of airway epithelium in replenishment of evaporated airway surface liquid from the human conducting airways. Ann. Biomed. Eng. 38:3535–3549, 2010.

    Article  CAS  PubMed  Google Scholar 

  26. Weibel, E. R. Morphometry of the human lung. New York: Academic Press, 1963.

    Book  Google Scholar 

  27. Weiler, J. M., S. D. Anderson, C. Randolph, S. Bonini, T. J. Craig, D. S. Pearlman, K. W. Rundell, W. S. Silvers, W. W. Storms, D. I. Bernstein, J. Blessing-Moore, L. Cox, D. A. Khan, D. M. Lang, R. A. Nicklas, J. Oppenheimer, J. M. Portnoy, D. E. Schuller, S. L. Spector, S. A. Tilles, D. Wallace, W. Henderson, L. Schwartz, D. Kaufman, T. Nsouli, L. Schieken, and N. Rosario. Pathogenesis, prevalence, diagnosis, and management of exercise-induced bronchoconstriction: a practice parameter. Ann. Allergy. Asthma. Immunol. 105:S1–S47, 2010.

    Article  PubMed  Google Scholar 

  28. Wu, D., M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. A numerical study of heat and water vapor transfer in MDCT-based human airway models. Ann. Biomed. Eng. 42:2117–2131, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yin, Y., J. Choi, E. A. Hoffman, M. H. Tawhai, and C.-L. Lin. Simulation of pulmonary air flow with a subject-specific boundary condition. J. Biomech. 43:2159–2163, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yin, Y., J. Choi, E. A. Hoffman, M. H. Tawhai, and C.-L. Lin. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. J. Comput. Phys. 244:168–192, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. We also thank SDSC, TACC, and XSEDE for the computer time.

Conflict of interest

E A. Hoffman is a shareholder in VIDA diagnostics, which is commercializing lung image analysis software derived from the University of Iowa lung imaging group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Long Lin.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Miyawaki, S., Tawhai, M.H. et al. A Numerical Study of Water Loss Rate Distributions in MDCT-Based Human Airway Models. Ann Biomed Eng 43, 2708–2721 (2015). https://doi.org/10.1007/s10439-015-1318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1318-3

Keywords

Navigation