Skip to main content
Log in

Tunable Nanostructures as Photothermal Theranostic Agents

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2012

Abstract

The theranostic potential of several nanostructures has been discussed in the context of photothermal therapies and imaging. In the last several decades, the burden of cancer has grown rapidly, making the need for new theranostic approaches vital. Lasers have emerged as promising tools in cancer treatment, especially with the advent of photothermal therapies wherein light absorbing dyes or plasmonic gold nanoparticles are used to generate heat and achieve tumor damage. Recently, photoabsorbing nanostructures have materialized that can be employed in conjunction with lasers in the near-infrared region in order to enhance both imaging and photothermal effects. The incorporation of tunable nanostructures has resulted in improved specificity in cancer treatment. Silica-cored gold nanoshells and gold nanorods currently serve as the chief plasmonic structures for photothermal therapy. Although gold nanorods and silica-cored gold nanoshells have shown promise as therapeutic agents, over the past few years new nanostructures have emerged that offer comparable and even superior theranostic properties. In the present review, several theranostic agents and their impact on the development of more effective photothermal therapies for the treatment of cancer are discussed. These agents include hollow gold nanoshells, gold gold-sulfide nanoparticles, gold nanocages, carbon and titanium nanotubes, photothermal-based nanobubbles, polymeric nanoparticles and copper-based nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Au, L., D. Zheng, F. Zhou, X. Y. Li, X. Li, and Y. Xia. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2(8):1645–1652, 2008.

    PubMed  CAS  Google Scholar 

  2. Averitt, R., D. Sarkar, and N. Halas. Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 78(22):4217–4220, 1997.

    CAS  Google Scholar 

  3. Averitt, R., S. L. Westcott, and N. J. Halas. Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B. 16(10):1824–1832, 1999.

    CAS  Google Scholar 

  4. Bachilo, S. M., M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366, 2002.

    PubMed  CAS  Google Scholar 

  5. Bode, A. M., and Z. Dong. Cancer prevention research—then and now. Nat. Rev. Cancer 9(7):508–516, 2009.

    PubMed  CAS  Google Scholar 

  6. Boyer, D., P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163, 2002.

    PubMed  CAS  Google Scholar 

  7. Chen, Y., W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Expr. 18(9):8867–8878, 2010.

    CAS  Google Scholar 

  8. Chen, J., C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. Welch, and Y. Xia. Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817, 2010.

    PubMed  CAS  Google Scholar 

  9. Chen, J., F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, and X. Li. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5(3):473–477, 2005.

    PubMed  CAS  Google Scholar 

  10. Chen, J., D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7(5):131813–131822, 2007.

    Google Scholar 

  11. Chen, J., B. J. Wiley, Z. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia. Gold nanocages: engineering their structure for biomedical applications. Adv. Mater. 17:2255–2261, 2005.

    CAS  Google Scholar 

  12. Cheng, F.-Y., C.-H. Su, P.-C. Wu, and C.-S. Yeh. Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo. Chem. Commun. 46(18):3167–3169, 2010.

    CAS  Google Scholar 

  13. Cherukuri, P., C. J. Gannon, T. K. Leeuw, H. K. Schmidt, R. E. Smalley, S. A. Curley, and R. B. Welsman. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl Acad. Sci. USA 103:18882–18886, 2006.

    PubMed  CAS  Google Scholar 

  14. Chithrani, B. D., A. A. Ghazani, and W. C. W. Chan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4):662–668, 2006.

    PubMed  CAS  Google Scholar 

  15. Day, E. S., L. R. Bickford, J. H. Slater, N. S. Riggall, R. A. Drezek, and J. L. West. Antibody-conjugated gold–gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int. J. Nanomed. 5:445–454, 2010.

    CAS  Google Scholar 

  16. Decuzzi, P., S. Lee, B. Bhushan, and M. Ferrari. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33(2):179–190, 2005.

    PubMed  CAS  Google Scholar 

  17. El-Sayed, M. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37(5):326–333, 2004.

    PubMed  CAS  Google Scholar 

  18. Fahlman, B. Zero-dimensional nanomaterials. In: Materials Chemistry, edited by B. Fahlman. New York: Springer, 2011, pp. 473–484.

    Google Scholar 

  19. Frimpong, R. A., S. Fraser, and J. Z. Hilt. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J. Biomed. Mater. Res. A 80:1–6, 2006.

    Google Scholar 

  20. Galaev, I. Y., and B. Mattiasson. “Smart” polymers and what they could do in biotechnology and medicine. Drug Deliv. 7799:335–340, 1999.

    Google Scholar 

  21. Gannon, C. J., P. Cherukuri, B. I. Yakobsen, L. Cognet, J. S. Kanzius, C. Kittrell, R. B. Weisman, M. Pasquali, H. K. Schmidt, R. E. Smalley, and S. A. Curley. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–2665, 2007.

    PubMed  CAS  Google Scholar 

  22. Garcia-Ripoll, A., A. M. Amat, A. Argues, R. Vicente, M. M. Ballesteros Martin, J. A. Sanchez Perez, I. Oller, and S. Malato. Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent. J. Hazard. Mater. 162:1223–1227, 2009.

    PubMed  CAS  Google Scholar 

  23. Ghosh, S., S. M. Bachilo, R. A. Simonette, K. M. Beckingham, and R. B. Weisman. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330:1656–1659, 2010.

    PubMed  CAS  Google Scholar 

  24. Ghosh, S., S. Dutta, E. Gomes, D. Carroll, R. D’Agostino, J. Olson, M. Guthold, and W. H. Gmeiner. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 3:2667–2673, 2009.

    PubMed  CAS  Google Scholar 

  25. Gobin, A. M., M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7(7):1929–1934, 2007.

    PubMed  CAS  Google Scholar 

  26. Gobin, A. M., E. M. Watkins, E. Quevedo, V. L. Colvin, and L. West. Near infrared resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6(6):745–752, 2010.

    PubMed  CAS  Google Scholar 

  27. Hessel, C., V. Pattani, M. Rasch, M. Panthani, B. Koo, J. Tunnell, and B. Korgel. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11(6):2560–2566, 2011.

    PubMed  CAS  Google Scholar 

  28. Hirsch, L., A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, and J. West. Metal nanoshells. Ann. Biomed. Eng. 34(1):15–22, 2006.

    PubMed  Google Scholar 

  29. Hirsch, L., R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100(23):13549–13554, 2003.

    PubMed  CAS  Google Scholar 

  30. Hong, C., J. Kang, J. Lee, H. Zheng, S. Hong, D. Lee, and C. Lee. Photothermal therapy using TiO2 nanotubes in combination with near-infrared laser. J. Cancer Ther. 1:52–58, 2010.

    CAS  Google Scholar 

  31. Hu, M., H. Petrova, J. Chen, J. M. McLellan, A. R. Siekkinen, M. Marquez, X. Li, Y. Xia, and G. V. Hartland. Ultrafast laser studies of the photothermal properties of gold nanocages. J. Phys. Chem. B 110(4):1520–1524, 2006.

    PubMed  CAS  Google Scholar 

  32. Huang, X., and M. A. El-Sayed. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1:13–28, 2010.

    Google Scholar 

  33. Huang, X., P. K. Jain, I. H. El-Sayed, and M. El-Sayed. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23(3):217–228, 2008.

    PubMed  Google Scholar 

  34. Jang, J. M., S. J. Park, G. S. Choi, T. Y. Kwon, and K. H. Kim. Chemical state and ultra-fine structure analysis of bio-compatible TiO2 nanotube-type oxide film formed on titanium substrate. Met. Mater. Int. 14:457–464, 2008.

    CAS  Google Scholar 

  35. Johnson, P. B., and R. W. Christy. Optical constants of the nobel metals. Phys. Rev. Lett. 11:541, 1963.

    CAS  Google Scholar 

  36. Kanehara, M., Y. Watanabe, and T. Teranishi. Thermally stable silica-coated hydrophobic gold nanoparticles. J. Nanosci. Nanotechnol. 9:673–675, 2009.

    PubMed  CAS  Google Scholar 

  37. Kawano, T., Y. Niidome, T. Mori, Y. Katayama, and T. Niidome. PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. Bioconj. Chem. 20(2):209–212, 2009.

    CAS  Google Scholar 

  38. Kostarelos, K., A. Bianco, and M. Prato. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 4:627–633, 2009.

    PubMed  CAS  Google Scholar 

  39. Kreibig, U., and M. Vollmer. Optical Properties of Metal Clusters. New York: Springer, 1995.

    Google Scholar 

  40. Kumar, R., A. N. Maitra, P. K. Patanjali, and P. Sharma. Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials 26:6743–6753, 2005.

    PubMed  CAS  Google Scholar 

  41. Lacerda, L., A. Bianco, M. Prato, and K. Kostarelos. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58:1460–1470, 2006.

    PubMed  CAS  Google Scholar 

  42. Lapotko, D. Plasmonic nanobubbles as tunable cellular probes for cancer theranostics. Cancers 3(1):802–840, 2011.

    PubMed  CAS  Google Scholar 

  43. Lee, H., C. Alt, C. Pitsillides, and C. Lin. Optical detection of intracellular cavitation during selective laser targeting of the retinal pigment epithelium: dependence of cell death mechanism on pulse duration. J. Biomed. Opt. 12(6):064034, 2007.

    PubMed  Google Scholar 

  44. Lee, K. S., and M. A. El-Sayed. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition. J. Phys. Chem. B 110(39):19220–19225, 2006.

    PubMed  CAS  Google Scholar 

  45. Lee, C., C. Hong, H. Kim, J. Kang, and H. M. Zheng. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy. Photochem. Photobiol. 86:981–989, 2010.

    PubMed  CAS  Google Scholar 

  46. Levi-Polyachenko, N. H., E. J. Merkel, B. T. Jones, D. L. Carroll, and J. H. Stewart. Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol. Pharm. 6(4):1092–1099, 2009.

    PubMed  CAS  Google Scholar 

  47. Li, J., W.-D. He, and X.-L. Sun. Preparation of poly(styrene-b-N-isopropylacrylamide) micelles surface-linked with gold nanoparticles and thermo-responsive ultraviolet–visible absorbance. J. Polym. Sci. A: Polym. Chem. 45:5156–5163, 2007.

    CAS  Google Scholar 

  48. Li, Y., W. Lu, Q. Huang, M. Huang, C. Li, and W. Chen. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5(8):1161–1171, 2010.

    PubMed  CAS  Google Scholar 

  49. Liang, H. P., L. J. Wan, C. L. Bai, and L. Jiang. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J. Phys. Chem. B 109:7795–7800, 2005.

    PubMed  CAS  Google Scholar 

  50. Link, S., and M. El-Sayed. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19(3):409–453, 2000.

    CAS  Google Scholar 

  51. Liu, Z., C. Davis, W. Cai, L. He, X. Chen, and H. Dai. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105:1410–1415, 2008.

    PubMed  CAS  Google Scholar 

  52. Liu, Z., X. Li, S. M. Tabakman, K. Jiang, S. Fan, and H. Dai. Multiplexed multi-color Raman imaging of live cells with isotopically modified single walled carbon nano-tubes. J. Am. Chem. Soc. 130:13540–13541, 2008.

    PubMed  CAS  Google Scholar 

  53. Liu, Z., S. M. Tabakman, Z. Chen, and H. Dai. Preparation of carbon nanotube bio-conjugates for biomedical applications. Nat. Protoc. 4:1372–1382, 2009.

    PubMed  CAS  Google Scholar 

  54. Liu, Z., S. M. Tabakman, K. Welsher, and H. Dai. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2:85–120, 2009.

    PubMed  CAS  Google Scholar 

  55. Liu, X., H. Tao, K. Yang, S. Zhang, S. T. Lee, and Z. Liu. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151, 2011.

    PubMed  Google Scholar 

  56. Lukianova-Hleb, E., E. Y. Hanna, J. H. Hafner, and D. O. Lapotko. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 21(8):85102, 2010.

    PubMed  CAS  Google Scholar 

  57. Lukianova-Hleb, E., Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. Drezek, J. Hafner, and D. Lapotko. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4(4):2109–2123, 2010.

    PubMed  CAS  Google Scholar 

  58. Lukianova-Hleb, E., I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko. Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles. J. Surg. Res. 166(1):e3–e13, 2011.

    PubMed  Google Scholar 

  59. Lukianova-Hleb, E., A. O. Oginsky, D. L. Shenefelt, R. A. Drezek, and J. H. Hafner. Rainbow plasmonic nanobubbles: synergistic activation of gold nanoparticle clusters. J. Nanomed. Nanotechnol. 2(1):1–8, 2011.

    PubMed  Google Scholar 

  60. Lukianova-Hleb, E., A. P. Samaniego, J. Wen, L. Metelitsa, C.-C. Chang, and D. Lapotko. Selective gene transfection of individual cells in vitro with plasmonic nanobubbles. J. Control. Release 152(2):286–293, 2011.

    PubMed  CAS  Google Scholar 

  61. Luther, J., P. Jain, T. Ewers, and P. Aliviatos. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10:361–366, 2011.

    PubMed  CAS  Google Scholar 

  62. Melancon, M. P., W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. Elliot, J. Stafford, T. Olson, J. Z. Zhang, and C. Li. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 7:1730–1739, 2008.

    PubMed  CAS  Google Scholar 

  63. Mischenko, M., L. Travis, and D. Mackowski. T-matrix computations of light scattering by nonspherical particles: a review. J. Quant. Spectrosc. Radiat. Transf. 55(5):535–575, 1996.

    Google Scholar 

  64. Moon, H. K., S. H. Lee, and H. C. Choi. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3:3707–3713, 2009.

    PubMed  CAS  Google Scholar 

  65. O’Connell, M. J., S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596, 2002.

    PubMed  Google Scholar 

  66. O’Neal, D., L. Hirsch, N. Halas, J. Payne, and J. West. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209:171–176, 2004.

    PubMed  Google Scholar 

  67. Pissuwan, D., S. Valenzuela, and M. Cortie. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24(2):62–67, 2006.

    PubMed  CAS  Google Scholar 

  68. Poon, L., W. Zandberg, D. Hsiao, Z. Erno, D. Sen, B. D. Gates, and N. R. Branda. Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au–S bond breaking. ACS Nano 4(11):6395–6403, 2010.

    PubMed  CAS  Google Scholar 

  69. Prevo, B. G., S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 4(8):1183–1195, 2008.

    PubMed  CAS  Google Scholar 

  70. Qiu, L., T. Larson, D. Smith, E. Vitkin, S. Zhang, M. Modell, I. Itskan, E. Hanlon, B. Korgel, K. Sokolov, and L. Perelman. Single gold nanorod detection using confocal light absorption and scattering spectroscopy. IEEE J. Sel. Top. Quant. Electron. 13(5):1730–1738, 2007.

    CAS  Google Scholar 

  71. Raschke, G., S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, and J. Feldmann. Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett. 4(10):1853–1857, 2004.

    CAS  Google Scholar 

  72. Robinson, J. T., K. Welsher, S. M. Tabakman, S. P. Sherlock, H. Wang, R. Luong, and H. Dai. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 3(11):779–793, 2007.

    Google Scholar 

  73. Sarkar, S., J. Fisher, C. Rylander, and M. N. Rylander. Photothermal response of tissue phantoms containing multi-walled carbon nanotubes. J. Biomech. Eng. 132(4):044505, 2010.

    PubMed  Google Scholar 

  74. Sasaki, K., K. Asanuma, K. Johkura, T. Kasuga, Y. Okouchi, N. Ogiwara, S. Kubota, R. Teng, L. Cui, and X. Zhao. Ultrastructural analysis of TiO2 nanotubes with photodecomposition of water into O2 and H2 implanted in the nude mouse. Ann. Anat. 188(2):137–142, 2006.

    PubMed  CAS  Google Scholar 

  75. Sasaki, S., H. Kawasaki, and H. Maeda. Volume phase transition behavior of N-isopropylacrylamide gels as a function of the chemical potential of water molecules. Biotechnol. Bioeng. 19(9):1405, 1977.

    Google Scholar 

  76. Schild, H. G. Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17:163–249, 1992.

    CAS  Google Scholar 

  77. Schipper, M. L., N. R. Nakayama, C. R. Davis, N. W. S. Kam, P. Chu, Z. Liu, X. Sun, H. Dai, and S. S. Gambhir. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3:216–221, 2008.

    PubMed  CAS  Google Scholar 

  78. Schwartzberg, A. M., C. D. Grant, T. van Buuren, and J. Z. Zhang. Reduction of HAuCl4 by Na2S revisited: the case for au nanoparticle aggregates and against Au2S/Au core/shell particles. J. Phys. Chem. C 111(25):8892–8901, 2007.

    CAS  Google Scholar 

  79. Schwartzberg, A. M., T. Y. Olson, C. E. Talley, and J. Z. Zhang. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J. Phys. Chem. B 110(40):19935–19944, 2006.

    PubMed  CAS  Google Scholar 

  80. Schwartzberg, A. M., T. Y. Oshiro, J. Z. Zhang, T. Huser, and C. E. Talley. Improving nanoprobes using surfaced-enhanced Raman scattering from 30-nm hollow gold particles. Anal. Chem. 78:4732–4736, 2006.

    PubMed  CAS  Google Scholar 

  81. Shi, K. N. W., M. O’Connell, J. A. Wisdom, and H. Dai. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102(33):11600–11605, 2005.

    Google Scholar 

  82. Slifka, A., G. Singh, D. Lauria, P. Rice, and R. Mahajan. Observations of nanobubble formation on carbon nanotubes. Appl. Phys. Expr. 3:065103, 2010.

    Google Scholar 

  83. Strong, L. E., and J. L. West. Thermally responsive polymer-nanoparticle composites for biomedical applications. Wiley interdisciplinary reviews. Nanomed. Nanobiotechnol. 3(3):307–317, 2011.

    CAS  Google Scholar 

  84. Sul, Y. T., C. B. Johansson, Y. Jeong, and T. Albrektsson. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med. Eng. Phys. 23(5):329–346, 2001.

    PubMed  CAS  Google Scholar 

  85. Sun, Y., B. T. Mayers, and Y. Xia. Template-engaged replacement reaction: a one step approach to the large scale synthesis of metal nanostructures with hallow interiors. Nano Lett. 2(5):481–485, 2002.

    CAS  Google Scholar 

  86. Sun, Y., and Y. Xia. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 3(11):1569–1572, 2003.

    CAS  Google Scholar 

  87. Sun, Y., and Y. Xia. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 126:3892–3901, 2004.

    PubMed  CAS  Google Scholar 

  88. von Wilmowsky, C., S. Bauer, R. Lutz, M. Meisel, F. W. Neukam, T. Toyoshima, P. Schmuki, E. Nkenke, and K. A. Schlegel. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J. Bio. Mater. Res. 89(1):165–171, 2009.

    Google Scholar 

  89. Wagner, D. S., N. A. Delk, E. Y. Lukianova-Hleb, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 31(29):7567–7574, 2010.

    PubMed  CAS  Google Scholar 

  90. Wang, C., N. . T. Flynn, and R. Langer. Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater. 16(13):1074–1079, 2004.

    CAS  Google Scholar 

  91. Wang, H. F., J. Wang, X. Y. Deng, H. F. Sun, Z. J. Shi, and Z. N. Gu. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4:1019–10124, 2004.

    PubMed  CAS  Google Scholar 

  92. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–317, 2001.

    PubMed  CAS  Google Scholar 

  93. Welsher, K., Z. Liu, D. Daranciang, and H. Dai. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8:586–590, 2008.

    PubMed  CAS  Google Scholar 

  94. Welsher, K., Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, and H. Dai. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4:773–780, 2009.

    PubMed  CAS  Google Scholar 

  95. Wielaard, D. J., M. I. Mishchenko, A. Macke, and B. E. Carlson. Improved T-matrix computations for large nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical-optics approximation. Appl. Opt. 36(18):4305–4313, 1997.

    PubMed  CAS  Google Scholar 

  96. Wu, P., X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, and C. R. Bertozzi. Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew. Chem. Int. Ed. 47:5022–5025, 2008.

    CAS  Google Scholar 

  97. Wu, G., A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, and J. A. Zasadzinski. Remotely triggered liposomal release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc. 130:8175–8177, 2008.

    PubMed  CAS  Google Scholar 

  98. Xiao, Y., X. Gao, O. Taratula, S. Treado, A. Urbas, R. D. Holbrook, R. Cavicchi, C. T. Avedisian, S. Mitra, R. Savla, P. D. Wagner, S. Srivastava, and H. He. Anti-her2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 9:351, 2009.

    PubMed  Google Scholar 

  99. Yang, J., J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J. Suh, Y. Huh, and S. Haam. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv. Mater. 21(43):4339–4342, 2009.

    CAS  Google Scholar 

  100. Yang, S. T., X. Wang, G. Jia, Y. Gu, T. Wang, H. Nie, C. Ge, H. Wang, and Y. Liu. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 101:181–182, 2008.

    Google Scholar 

  101. Yao, C., G. Balasundaram, and T. Webster. Use of anodized titanium in drug delivery applications. Mater. Res. Soc. Symp. Proc. 951:0951-E12-28, 2007.

    Google Scholar 

  102. Yavuz, M. S., Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, A. G. Schwartz, L. V. Wang, and Y. Xia. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8(12):935–939, 2009.

    PubMed  CAS  Google Scholar 

  103. Zavaleta, C., A. Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, and S. S. Gambhir. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8:2800–2805, 2008.

    PubMed  CAS  Google Scholar 

  104. Zhang, Y. M., P. Bataillon-Linez, P. Huang, Y. M. Zhao, Y. Han, M. Traisnel, K. W. Xu, and H. F. Hildebrand. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J. Biomed. Mater. Res. 68A(2):383–391, 2004.

    CAS  Google Scholar 

  105. Zhang, J., A. M. Schwartzberg, T. Norman, C. Grant, J. Liu, F. Bridges, and T. Buuren. Comment on “gold nanoshells improve single nanoparticle molecular sensors”. Nano Lett. 5(4):809–810, 2005.

    PubMed  CAS  Google Scholar 

  106. Zhao, X., X. Ding, Z. Deng, Z. Zheng, Y. Peng, C. Tian, and L. Xinping. A kind of smart gold nanoparticle hydrogel composite with tunable thermo-switchable electrical properties. New J. Chem. 30(6):915, 2006.

    CAS  Google Scholar 

  107. Zhao, X., T. Wang, W. Liu, C. Wang, D. Wang, T. Shang, L. Shen, and L. Ren. Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J. Mater. Chem. 21(20):7240, 2011.

    CAS  Google Scholar 

  108. Zharov, V., and V. Galitovsky. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett. 83(24):4897–4899, 2003.

    CAS  Google Scholar 

  109. Zharov, V., J.-W. Kim, D. Curiel, and M. Everts. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1(4):326–345, 2005.

    PubMed  CAS  Google Scholar 

  110. Zhou, H., I. Honma, H. Komiyama, and J. Haus. Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B Condens. Mat. 50(16):12052–12056, 1994.

    CAS  Google Scholar 

  111. Zhou, F., D. Xing, Z. Ou, B. Wu, D. E. Resasco, and W. R. Chen. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14:021009, 2009.

    PubMed  Google Scholar 

  112. Zhou, M., R. Zhang, M. Huang, W. Lu, S. Song, M. Melancon, M. Tian, D. Liang, and C. Li. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. JACS 132(43):15351–15358, 2010.

    CAS  Google Scholar 

  113. Zwilling, V., M. Aucouturier, and E. Darque-Ceretti. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta 45:921–929, 1999.

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Science Foundation, Dod CDMRP era of hope scholar award, and the NIH grand opportunities RC2 award.

Conflicts of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekah A. Drezek.

Additional information

Associate Editor Bahman Anvari oversaw the review of this article.

J. K. Young and E. R. Figueroa have contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-012-0535-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, J.K., Figueroa, E.R. & Drezek, R.A. Tunable Nanostructures as Photothermal Theranostic Agents. Ann Biomed Eng 40, 438–459 (2012). https://doi.org/10.1007/s10439-011-0472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0472-5

Keywords

Navigation