Skip to main content

Advertisement

Log in

In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper compares numerical predictions of turbulence intensity with in vivo measurement. Magnetic resonance imaging (MRI) was carried out on a 60-year-old female with a restenosed aortic coarctation. Time-resolved three-directional phase-contrast (PC) MRI data was acquired to enable turbulence intensity estimation. A contrast-enhanced MR angiography (MRA) and a time-resolved 2D PCMRI measurement were also performed to acquire data needed to perform subsequent image-based computational fluid dynamics (CFD) modeling. A 3D model of the aortic coarctation and surrounding vasculature was constructed from the MRA data, and physiologic boundary conditions were modeled to match 2D PCMRI and pressure pulse measurements. Blood flow velocity data was subsequently obtained by numerical simulation. Turbulent kinetic energy (TKE) was computed from the resulting CFD data. Results indicate relative agreement (error ≈10%) between the in vivo measurements and the CFD predictions of TKE. The discrepancies in modeled vs. measured TKE values were within expectations due to modeling and measurement errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. Data was considered only after the solution had sufficiently converged.

References

  1. Boussel, L., V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn. Reson. Med. 61(2):409–417, 2009.

    Article  PubMed  Google Scholar 

  2. Deissler, R. G. Turbulent Fluid Motion. Philadelphia: Taylor and Francis, 1998.

  3. Dyverfeldt, P., R. Gardhagen, A. Sigfridsson, M. Karlsson, and T. Ebbers. On MRI turbulence quantification. Magn. Reson. Med. 27(7):913–922, 2009.

    Google Scholar 

  4. Dyverfeldt, P., J. P. E. Kvitting, A. Sigfridsson, J. Engvall, A. F. Bolger, and T. Ebbers. Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase-contrast MRI. J. Magn. Reson Imaging 28(3):655–663, 2008.

    Article  PubMed  Google Scholar 

  5. Dyverfeldt, P., A. Sigfridsson, J. P. E. Kvitting, and T. Ebbers. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn. Reson. Med. 56(4):850–858, 2006.

    Article  PubMed  Google Scholar 

  6. Elkins, C., M. Alley, L. Saetran, and J. Eaton. Three-dimensional magnetic resonance velocimetry measurements of turbulence quantities in complex flow. Exp. Fluids 46(2):285–296, 2009.

    Article  Google Scholar 

  7. Firmin, D. N., P. D. Gatehouse, J. P. Konrad, G. Z. Yang, P. J. Kilner, and D. B. Longmore. Rapid 7-dimensional imaging of pulsatile flow. In: Proceedings in Computers in Cardiology, 1993.

  8. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. DeMont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24(12):1586–1592, 2005

    Article  PubMed  Google Scholar 

  9. Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2):021015, 2008.

    Article  PubMed  Google Scholar 

  10. Gao, J., and J. C. Gore. Turbulent flow effects on NMR imaging: measurement of turbulent intensity. Med. Phys. 18(5):1045–1051, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Gatenby, J. C., T. R. McCauley, and J. C. Gore. Mechanisms of signal loss in magnetic resonance imaging of stenoses. Med. Phys. 20(4):1049–1057, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128(6):844–851, 2006.

    Article  PubMed  Google Scholar 

  13. Jansen, K. E., C. H. Whiting, and G. M. Hulbert. Generalized-alpha method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190(3):305–319, 2000.

    Article  Google Scholar 

  14. Kim, H. J., C. A. Figueroa, T. J. R. Hughes, K. E. Jansen, and C. A. Taylor. Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. 198(45–46):3551–3566, 2009.

    Article  Google Scholar 

  15. Ku, J. P., M. T. Draney, F. R. Arko, W. A. Lee, F. P. Chan, N. J. Pelc, C. K. Zarins, and C. A. Taylor. Validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30(6):743–752, 2002.

    Article  PubMed  Google Scholar 

  16. Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft mode. Ann. Biomed. Eng. 33(3):257–269, 2005.

    Article  PubMed  Google Scholar 

  17. Kung, E. O., A. S. Les, C. A. Figueroa, F. Medina, K. Arcaute, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39:1947–1960, 2011.

    Google Scholar 

  18. Kung, E. O., A. S. Les, F. Medina, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J. Biomech. Eng. 133(4):041003, 2011.

    Article  PubMed  Google Scholar 

  19. LaDisa, J. F., Jr., R. J. Dholakia, C. A. Figueroa, I. E. Vignon-Clementel, F. P. Chan, M. M. Samyn, J. R. Cava, C. A. Taylor, and J. A. Feinstein. Computational simulations demonstrate altered wall shear stress in aortic coarctation patients previously treated by resection with end-to-end anastomosis. Congenit. Heart Dis. 6(5):432–443, 2011.

    Article  PubMed  Google Scholar 

  20. LaDisa, J. F., C. A. Taylor, and F. A. Jeffrey FA. Aortic coarctation: recent developments in experimental and computational methods to assess treatments for this simple condition. Prog. Pediatr. Cardiol. 30(1–2):45–49, 2010.

    Article  PubMed  Google Scholar 

  21. Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Kussmaul, and A. Noordergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Physiol. 69(1):112–119, 1990.

    PubMed  CAS  Google Scholar 

  22. Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.

    Article  PubMed  Google Scholar 

  23. Marshall, I., S. Zhao, P. Papathanasopoulou, P. Hoskins, X. Y. Xu. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37(5):679–687, 2004.

    Article  PubMed  Google Scholar 

  24. Morris, L., P. Delassus, A. Callanan, M. Walsh, F. Wallis, P. Grace, and T. McGloughlin T. 3-D numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 127(5):767–775, 2005.

    Article  PubMed  CAS  Google Scholar 

  25. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. London: Hodder Arnold Publication, 2005.

  26. Papathanasopoulou, P., S. Zhao, U. Kohler, M. B. Robertson, Q. Long, P. Hoskins, X. Y. Xu, and I. Marshall. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17(2):153–162, 2003.

    Article  PubMed  Google Scholar 

  27. Petersson, S., P. Dyverfeldt, R. Gardhagen, M. Karlsson, and T. Ebbers. Simulation of phase contrast MRI of turbulent flow. Magn. Reson. Med. 64(4):1039–1046, 2010.

    Article  PubMed  Google Scholar 

  28. Rayz, V. L., L. Boussel, G. Acevedo-Bolton, A. J. Martin, W. L. Young, M. T. Lawton, R. Higashida, and D. Saloner. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130(5):051011, 2008.

    Article  PubMed  Google Scholar 

  29. Richter, Y., and E. R. Elazer. Cardiology is flow. Circulation 113(23):2679–2682, 2006.

    Article  PubMed  Google Scholar 

  30. Seed, W. A., and N. B. Wood. Velocity patterns in the aorta. Cardiovasc. Res. 5(3):319–330, 1971.

    Article  PubMed  CAS  Google Scholar 

  31. Steinman, D. A., C. R. Ethier, and B. K. Rutt. Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows. J. Magn. Reson. Imaging 7(2):339–346, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Stergiopulos, N., J. Meister, and N. Westerhof. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann. Biomed. Eng. 22:392–397, 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25(12):1477–1488, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: Computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5):231–247, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor, C. A., and C. A. Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11(1):109–134, 2009.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2):155–196, 1998.

    Article  Google Scholar 

  37. Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38(3):1188–1203, 2010.

    Article  PubMed  Google Scholar 

  38. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29-32):3776–3796, 2006.

    Article  Google Scholar 

  39. Wigstrom, L., L. Sjoqvist, and B. Wranne B. Temporally resolved 3D phase-contrast imaging. Magn. Reson. Med. 36(5):800–803, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Wilson, N., K. Wang, R. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456, 2001.

    Article  Google Scholar 

  41. Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11):1303–1310, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the support of the Fulbright Commission, the Swedish Heart-Lung Foundation, the Swedish Brain Foundation, the Swedish Research Council and the Center for Industrial Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn C. Shadden.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzani, A., Dyverfeldt, P., Ebbers, T. et al. In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation. Ann Biomed Eng 40, 860–870 (2012). https://doi.org/10.1007/s10439-011-0447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0447-6

Keywords

Navigation