Skip to main content

Advertisement

Log in

Hemoglobin Glycation Rate Constant in Non-diabetic Individuals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objectives were as follows: (1) estimating mean value of the overall hemoglobin glycation rate constant (k); (2) analyzing inter-individual variability of k; (3) verifying ability of the hemoglobin A1c (HbA1c) formation model to predict changes of HbA1c during red blood cells cultivation in vitro and to reproduce the clinical data. The mean k estimated in a group of 10 non-diabetic subjects was equal to 1.257 ± 0.114 × 10−9 L mmol−1 s−1. The mean k was not affected by a way of estimation of glycemia. The mean k differed less than 20% from values reported earlier and it was almost identical to the mean values calculated on basis of the selected published data. Analysis of variability of k suggests that inter-individual heterogeneity of HbA1c formation is limited or rare. The HbA1c mathematical model was able to predict changes of HbA1c in vitro resulting from different glucose levels and to reproduce a linear relationship of HbA1c and average glucose obtained in the A1C-Derived Average Glucose Study. This study demonstrates that the glycation model with the same k value might be used in majority of individuals as a tool supporting interpretation of HbA1c in different clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. American Diabetes Association. Tests of glycemia in diabetes. Diabetes Care 25:S97–S99, 2002.

    Article  Google Scholar 

  2. Beach, K. W. A theoretical model to predict the behavior of glycosylated hemoglobin levels. J. Theor. Biol. 81:547–561, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Borg, R., J. C. Kuenen, B. Carstensen, H. Zheng, D. M. Nathan, R. J. Heine, J. Nerup, K. Borch-Johnsen, D. R. Witte, and on behalf of the ADAG Study Group. Associations between features of glucose exposure and A1C. The A1C-Derived Average Glucose (ADAG) Study. Diabetes 59:1585–1590, 2010.

    Article  PubMed  CAS  Google Scholar 

  4. Bunn, H. F., D. N. Haney, S. Kamin, K. H. Gabbay, and P. M. Gallop. The biosynthesis of human hemoglobin A1c. Slow glycation of hemoglobin in vivo. J. Clin. Invest. 57:1652–1659, 1976.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen, M., E. Boyle, C. Delaney, and J. Shaw. A comparison of blood glucose meters in Australia. Diabetes. Res. Clin. Pract. 71:113–118, 2006.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen, R. M., R. S. Franco, P. K. Khera, E. P. Smith, C. J. Lindsell, P. J. Ciraolo, M. B. Palascak, and C. H. Joiner. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 112:4284–4291, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Fogh-Andersen, N., and P. D’Orazio. Proposal for standardizing direct-reading biosensors for blood glucose. Clin. Chem. 44:655–659, 1998.

    PubMed  CAS  Google Scholar 

  8. Nathan, D. M., The International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32:1327–1334, 2009.

    Article  CAS  Google Scholar 

  9. Gould, B. J., S. J. Davie, and J. S. Yudkin. Investigation of the mechanism underlying the variability of glycated haemoglobin in non-diabetic subjects not related to glycaemia. Clin. Chim. Acta 260:49–64, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Graf, R. J., J. B. Halter, and D. Porte, Jr. Glycosylated hemoglobin in normal subjects and subjects with maturity-onset diabetes. Evidence for a saturable system in man. Diabetes 27:834–839, 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Hempe, J. M., R. Gomez, R. J. McCarter, Jr., and S. A. Chalew. High and low hemoglobin glycation phenotypes in type 1 diabetes: a challenge for interpretation of glycemic control. J. Diabetes Complicat. 16:313–320, 2002.

    Article  PubMed  Google Scholar 

  12. Higgins, P. J., and H. F. Bunn. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 256:5204–5208, 1981.

    PubMed  CAS  Google Scholar 

  13. Hoelzel, W., C. Weykamp, J. O. Jeppsson, K. Miedema, J. R. Barr, I. Goodall, T. Hoshino, W. G. John, U. Kobold, R. Little, A. Mosca, P. Mauri, R. Paroni, F. Susanto, I. Takei, L. Thienpont, M. Umemoto, H. M. Wiedmeyer, and IFCC Working Group on HbA1c Standardization. IFCC reference system for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: a method-comparison study. Clin. Chem. 50:166–174, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Hudson, P. R., D. F. Child, H. Jones, and C. P. Williams. Differences in rates of glycation (glycation index) may significantly affect individual HbA1c results in type 1 diabetes. Ann. Clin. Biochem. 36:451–459, 1999.

    PubMed  Google Scholar 

  15. International Federation of Clinical Chemistry and Laboratory Medicine Scientific Division, Working Group on Selective Electrodes and Point-of-Care Testing (IFCC-SD-WG-SEPOCT), P. D’Orazio, R. W. Burnett, N. Fogh-Andersen, E. Jacobs, K. Kuwa, W. R. Kulpmann, L. Larsson, A. Lewenstam, A. H. J. Maas, G. Mager, J. W. Naskalski, and A. O. Okorodudu. Approved IFCC recommendation on reporting results for blood glucose. Clin. Chem. Lab. Med. 44:1486–1490, 2006.

    Article  PubMed  Google Scholar 

  16. Ladyzynski, P., J. M. Wojcicki, M. Bak, S. Sabalinska, J. Kawiak, P. Foltynski, J. Krzymien, and W. Karnafel. Validation of hemoglobin glycation models using glycemia monitoring in vivo and culturing of erythrocytes in vitro. Ann. Biomed. Eng. 36:1188–1202, 2008.

    Article  PubMed  Google Scholar 

  17. Leitch, J. M., and A. Carruthers. ATP-dependent sugar transport complexity in human erythrocytes. Am. J. Physiol. Cell Physiol. 292:C974–C986, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. McCarter, R. J., J. M. Hempe, and S. A. Chalew. Mean blood glucose and biological variation have greater influence on HbA1c levels than glucose instability. An analysis of data from the Diabetes Control and Complications Trial. Diabetes Care 9:352–355, 2006.

    Article  Google Scholar 

  19. Mortensen, H. B., and C. Christophersen. Glucosylation of human haemoglobin A in red blood cells studied in vitro. Kinetics of the formation and dissociation of haemoglobin A1c. Clin. Chim. Acta 134:317–326, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Mortensen, H. B., and A. Vølund. Variations in hemoglobin A1c and blood glucose in children with newly diagnosed diabetes mellitus described by a biokinetic model. Diabetes Metab. 10:18–24, 1984.

    CAS  Google Scholar 

  21. Mortensen, H. B., and A. Vølund. Application of a biokinetic model for prediction and assessment of glycated haemoglobins in diabetic patients. Scand. J. Clin. Lab. Invest. 48:595–602, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Nathan, D. M., J. Kuenen, R. Borg, H. Zheng, D. Schoenfeld, and R. J. Heine. Translating the A1C assay into estimated average glucose values. Diabetes Care 31:1473–1478, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Nathan, D. M., H. Turgeon, and S. Regan. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia 50:2239–2244, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Osterman-Golkar, S. M., and H. W. Vesper. Assessment of the relationship between glucose and A1c using kinetic modeling. J. Diabetes Complicat. 20:285–294, 2006.

    Article  PubMed  Google Scholar 

  25. Tahara, Y., and K. Shima. The response of GHb to stepwise plasma glucose change over time in diabetic patients. Diabetes Care 16:1313–1314, 1993.

    PubMed  CAS  Google Scholar 

  26. The Diabetes Research in Children Network (DirecNet) Study Group. The accuracy of the Guardian® RT continuous glucose monitor in children with type 1 diabetes. Diabetes Technol. Ther. 10:266–272, 2008.

    Article  Google Scholar 

  27. Virtue, M. A., J. K. Furne, F. Q. Nuttall, and M. D. Levitt. Relationship between GHb concentration and erythrocyte survival determined from breath carbon monoxide concentration. Diabetes Care 27:931–935, 2004.

    Article  PubMed  CAS  Google Scholar 

  28. Willekens, F. L., B. Roerdinkholder-Stoelwinder, Y. A. Groenen-Dopp, H. J. Bos, G. J. Bosman, A. G. van den Bos, A. J. Verkleij, and J. M. Werre. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood 101:747–751, 2007.

    Article  Google Scholar 

  29. Yudkin, J. S., R. D. Forrest, C. A. Jackson, A. J. Ryle, S. Davie, and B. J. Gould. Unexplained variability of glycated haemoglobin in non-diabetic subjects not related to glycaemia. Diabetologia 33:208–215, 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang, Y., and S. Neelamegham. Cell counter, blood. In: Encyclopedia of Medical Devices and Instrumentation, edited by J. G. Webster. New York: John Wiley & Sons, 2006.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the National Centre for Science (Grant no. N N518 289340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Ładyżyński.

Additional information

Associate Editor Gerald Saidel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ładyżyński, P., Wójcicki, J.M., Bąk, M.I. et al. Hemoglobin Glycation Rate Constant in Non-diabetic Individuals. Ann Biomed Eng 39, 2721–2734 (2011). https://doi.org/10.1007/s10439-011-0366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0366-6

Keywords

Navigation