Skip to main content
Log in

Validation of Hemoglobin Glycation Models Using Glycemia Monitoring In Vivo and Culturing of Erythrocytes In Vitro

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Glycated hemoglobin A1c (HbA1c) concentration in blood is an index of the glycemic control widely used in diabetology. The aim of the work was to validate two mathematical models of HbA1c formation (assuming irreversible or reversible glycation, respectively) and select a model, which was able to predict changes of HbA1c concentration in response to varying glycemia courses with higher accuracy. The experimental procedure applied consisted of an original combination of: in vivo continuous glucose concentration monitoring, long-term in vitro culturing of the human erythrocytes and mathematical modeling of HbA1c formation in vivo and in vitro with HbA1c values scaled according to the most specific analytical methods. Sixteen experiments were conducted in vitro using blood samples collected from healthy volunteer and stable type 1 diabetic patients whose glycemia was estimated beforehand based on long-term monitoring. The mean absolute difference of the measured and predicted HbA1c concentrations for the in vitro experiments were equal to 0.64 ± 0.29% and 1.42 ± 0.16% (p = 0.0007) for irreversible and for reversible model, respectively, meaning that the irreversible model was able to predict the glycation kinetics with a higher accuracy. This model was also more sensitive to a deviation of the erythrocytes life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. American Diabetes Association. Tests of glycemia in diabetes. Diabetes Care 25:S97–99, 2002. doi:10.2337/diacare.25.2007.S97

    Article  Google Scholar 

  2. Bastanhagh M. H., A. R. Shirvan, R. Heshmat, A. Khalilifard, A. Keshtkar, B. Larijan. Evaluation of the effi cacy of blood glucose home monitoring devices. Med. Sci. Monit. 13:PI1–6, 2007

    PubMed  Google Scholar 

  3. Beach K. W. A theoretical model to predict the behavior of glycosylated hemoglobin levels. J. Theor. Biol. 81:547–561, 1979. doi:10.1016/0022-5193(79)90052-3

    Article  PubMed  CAS  Google Scholar 

  4. Bunn H. F., D. N. Haney, K. H. Gabbay, P. M. Gallop. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem. Biophys. Res. Commun. 67:103–109, 1975. doi:10.1016/0006-291X(75)90289-2

    Article  PubMed  CAS  Google Scholar 

  5. College of American Pathologists. The College of American Pathologists fresh sample proficiency testing survey for A1c. http://www.ngsp.org/prog/CAP/CAP07a.pdf, 2007

  6. Consensus Committee. Consensus statement on the worldwide standardization of the hemoglobin A1C measurement: the American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine and the International Diabetes Federation. Diabetes Care. 30:2399–2400, 2007. doi:10.2337/dc07-9925

    Article  Google Scholar 

  7. Delpierre G., D. Vertommen, D. Communi, M. H. Rider, E. Van Schaftingen. Identification of fructosamine residues deglycated by fructosamine-3-kinase in human hemoglobin. J. Biol. Chem. 279:27613–27620, 2004. doi:10.1074/jbc.M402091200

    Article  Google Scholar 

  8. Diabetes in Research Children Network (DirecNet) Study Group. Evaluation of factors affecting CGMS calibration. Diabetes Technol. Ther. 8:318–325, 2006. doi:10.1089/dia.2006.8.318

    Article  Google Scholar 

  9. Fogh-Andersen N., P. D’Orazio. Proposal for standardizing direct-reading biosensors for blood glucose. Clin. Chem. 44:655–659, 1998

    PubMed  CAS  Google Scholar 

  10. Graf R., J. Halter, D. Porte Jr. Glycosylated hemoglobin in normal subjects and subjects with maturity-onset diabetes. Evidence for a saturable system in man. Diabetes. 27:834–839, 1978. doi:10.2337/diabetes.27.8.834

    Article  PubMed  CAS  Google Scholar 

  11. Guerci B., M. Floriot, P. Böhme, D. Durain, M. Benichou, S. Jellimann, P. Drouin. Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs. Diabetes Care. 26:582–589, 2003. doi:10.2337/diacare.26.3.582

    Article  PubMed  CAS  Google Scholar 

  12. Higgins P. J., H. F. Bunn. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 256:5204–5208, 1981

    PubMed  CAS  Google Scholar 

  13. Hoelzel W., C. Weykamp, J. O. Jeppsson, K. Miedema, J. R. Barr, I. Goodall, T. Hoshino, W. G. John, U. Kobold, R. Little, A. Mosca, P. Mauri, R. Paroni, F. Susanto, I. Takei, L. Thienpont, M. Umemoto, H. M. Wiedmeyer. IFCC Working Group on HbA1c Standardization. IFCC reference system for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: a method-comparison study. Clin. Chem. 50:166–174, 2004. doi:10.1373/clinchem.2003.024802

    Article  PubMed  CAS  Google Scholar 

  14. Jeffcoate S. L. Diabetes control and complications: the role of glycated haemoglobin, 25 years on. Diabet. Med. 21:657–665, 2004. doi:10.1046/j.1464-5491.2003.01065.x

    Article  PubMed  CAS  Google Scholar 

  15. Jeppsson J. O., U. Kobold, J. Barr, A. Finke, W. Hoelzel, T. Hoshino, K. Miedema, A. Mosca, P. Mauri, R. Paroni, L. Thienpont, M. Umemoto, C. Weykamp. International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): Approved IFCC reference method for the measurement of HbA1c in human blood. Clin. Chem. Lab. Med. 40:78–89, 2002. doi:10.1515/CCLM.2002.016

    Article  PubMed  CAS  Google Scholar 

  16. YSI Life Sciences, YSI 2300 Stat Plus—Operation Manual. Yellow Springs: YSI Inc., 7 pp, 2003

  17. Mortensen H. B., C. Christophersen. Glucosylation of human haemoglobin A in red blood cells studied in vitro. Kinetics of the formation and dissociation of haemoglobin A1c. Clin. Chim. Acta. 134:317–326, 1983. doi:10.1016/0009-8981(83)90370-4

    Article  PubMed  CAS  Google Scholar 

  18. Mortensen H. B., A. Vølund. Variations in hemoglobin A1c and blood glucose in children with newly diagnosed diabetes mellitus described by a biokinetic model. Diabetes Metab. 10:18–24, 1984

    CAS  Google Scholar 

  19. Mortensen H. B., A. Vølund. Application of a biokinetic model for prediction and assessment of glycated haemoglobins in diabetic patients. Scand. J. Clin. Lab. Invest. 48:595–602, 1988. doi:10.3109/00365518809085778

    Article  PubMed  CAS  Google Scholar 

  20. Osterman-Golkar S. M., H. W. Vesper. Assessment of the relationship between glucose and A1c using kinetic modeling. J. Diabetes Complicat. 20:285–294, 2006. doi:10.1016/j.jdiacomp.2005.07.009

    Article  PubMed  Google Scholar 

  21. Skowroska M., B. Marczewska. The comparative study of glucose determination by selected point-of-care glucose meters on the quality control viewpoint. Diebetologia Praktyczna 6:173–176, 2005

    Google Scholar 

  22. Smith R. J., R. J. Koenig, A. Binnerts, J. S. Soeldner, T. T. Aoki. Regulation of hemoglobin A1c formation in human erythrocytes in vitro. Effects of physiologic factors other than glucose. J. Clin. Invest. 69:1164–1168, 1982. doi:10.1172/JCI110552

    Article  PubMed  CAS  Google Scholar 

  23. Tahara Y., K. Shima. The response of GHb to stepwise plasma glucose change over time in diabetic patients. Diabetes Care. 16:1313–1314, 1993

    PubMed  CAS  Google Scholar 

  24. Tosi F., M. Muggeo, E. Brun, G. Spiazzi, L. Perobelli, E. Zanolin, M. Gori, A. Coppini, P. Moghetti. Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism. 52:862–867, 2003. doi:10.1016/S0026-0495(03)00101-X

    Article  PubMed  CAS  Google Scholar 

  25. Traczyk W. Z., A. Trzebski (eds.). Human Physiology with Elements of the Applied and Clinical Physiology. Warszawa: PZWL, 2004, 210 pp

    Google Scholar 

  26. Vermes I., C. Haanen, H. Steffens-Nakken, C. Reutelingsperger. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Meth. 184:39–51, 1995. doi:10.1016/0022-1759(95)00072-I

    Article  CAS  Google Scholar 

  27. Willekens F. L., B. Roerdinkholder-Stoelwinder, Y. A. Groenen-Döpp, H. J. Bos, G. J. Bosman, A. G. van den Bos, A. J. Verkleij, J. M. Werre. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood 101:747–751, 2003. doi:10.1182/blood-2002-02-0500

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y., S. Neelamegham. “Cell counter, blood.” In: Encyclopedia of Medical Devices and Instrumentation, edited by J. G. Webster. New York: John Wiley & Sons, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Ładyżyński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ładyżyński, P., Wójcicki, J.M., Bąk, M. et al. Validation of Hemoglobin Glycation Models Using Glycemia Monitoring In Vivo and Culturing of Erythrocytes In Vitro . Ann Biomed Eng 36, 1188–1202 (2008). https://doi.org/10.1007/s10439-008-9508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9508-x

Key terms

Navigation