Skip to main content

Advertisement

Log in

Surface Modifications of Magnesium Alloys for Biomedical Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In recent years, research on magnesium (Mg) alloys had increased significantly for hard tissue replacement and stent application due to their outstanding advantages. Firstly, Mg alloys have mechanical properties similar to bone which avoid stress shielding. Secondly, they are biocompatible essential to the human metabolism as a factor for many enzymes. In addition, main degradation product Mg is an essential trace element for human enzymes. The most important reason is they are perfectly biodegradable in the body fluid. However, extremely high degradation rate, resulting in too rapid loss of mechanical strength in chloride containing environments limits their applications. Engineered artificial biomaterials with appropriate mechanical properties, surface chemistry, and surface topography are in a great demand. As the interaction between the cells and tissues with biomaterials at the tissue–implant interface is a surface phenomenon; surface properties play a major role in determining both the biological response to implants and the material response to the physiological condition. Therefore, the ability to modify the surface properties while preserve the bulk properties is important, and surface modification to form a hard, biocompatible and corrosion resistant modified layer have always been an interesting topic in biomaterials field. In this article, attempts are made to give an overview of the current research and development status of surface modification technologies of Mg alloys for biomedical materials research. Further, the advantages/disadvantages of the different methods and with regard to the most promising method for Mg alloys are discussed. Finally, the scientific challenges are proposed based on own research and the work of other scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aune, T. K. Proceedings of the 40th World Magnesium Conference. Toronto: IMA, 1983, p. 52.

  2. Cardarelli, F. Less common non-ferrous metals. In: Materials Handbook. London: Springer London Limited, 2000, pp. 99–107.

  3. Chiu, L. H., H. A. Lin, C. C. Chen, C. C. Yang, C. H. Chang, and J. C. Wu. Effect of aluminum coatings on corrosion properties of AZ31B magnesium alloy. Mater. Sci. Forum 419–422:909–914, 2003.

    Article  Google Scholar 

  4. Chou, W. J., G. P. Yu, and J. H. Huang. Corrosion resistance of ZrN films on AISI 304 stainless steel substrate. Surf. Coat. Technol 167:59–67, 2003.

    Article  CAS  Google Scholar 

  5. Cui, F. Z., and Z. S. Luo. Biomaterials modification by ion-beam processing. Surf. Coat. Technol. 112:278–285, 1999.

    Article  CAS  Google Scholar 

  6. Cui, F. Z., X. L. Qing, D. J. Li, and J. Zhao. Biomedical investigations on CNx coating. Surf. Coat. Technol. 200:1009, 2005.

    Article  CAS  Google Scholar 

  7. Cui, F. Z., J. X. Yang, Y. P. Jiao, Q. S. Yin, and Y. Zhang. Calcium phosphate coating on magnesium alloy by biomimetic method: investigation of morphology, composition and formation process. Front. Mater. Sci. China 6:143–148, 2008.

    Article  Google Scholar 

  8. Dabosi, F. J. P., R. Morancho, and D. Pouteau. Process for producing a protective film on magnesium containing substrates by chemical vapor deposition of two or more layers, US4980203, 1990.

  9. Denkena, B., and A. Lucas. Biocompatible magnesium alloys as absorbable implant materials—adjusted surface and subsurface properties by machining processes. Ann. CIRP 56(1):113–116, 2007.

    Article  Google Scholar 

  10. Fang, H. E., W. Y. Zao, X. S. Zhou, Y. Huang, and Y. L. Wang. Zn ion implantation and corrosion behavior of new medical Mg–Ca alloys. Heat Treat. Met. 134(14):32–37, 2009.

    Google Scholar 

  11. Gao, B., S. Z. Hao, C. Dong, and J. Y. Zhou. Progress of surface treatment for magnesium alloys. Mater. Prot. 36(10):1–3, 2003.

    CAS  Google Scholar 

  12. Geng, F., L. L. Tan, Y. L. He, J. Y. Yang, B. C. Zhang, and K. Yang. Preparation and cytocompatibility of bioactive β-TCP coatings on porous magnesium scaffold surface. Rare Met. Mater. Eng. 38(2):318–322, 2009.

    CAS  Google Scholar 

  13. Gonzalez-Nunez, M. A., C. A. Nunez-Lopez, P. Skeldon, G. E. Thompson, H. Karimzadeh, P. Lyon, and T. E. Wilks. A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites. Corros. Sci. 37(11):1763, 1995.

    Article  CAS  Google Scholar 

  14. Goodridge, R. D., and K. W. Dalgarno. Indirect selective laser sintering of an apatite-mullite glassceramic for potential use in bone replacement applications. Proc. IMechE, 220, Part H, J. Engng in Medicine 220:57–68, 2006.

    Article  CAS  Google Scholar 

  15. Gray, J. E., and B. Luan. Protective coatings on magnesium and its alloys—a critical review. J. Alloys Compd. 336:88–113, 2002.

    Article  CAS  Google Scholar 

  16. Green, D., D. Walsh, S. Mann, and R. O. C. Oreffo. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30:810–815, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Grewe, P. H., K. M. Muller, T. Deneke, E. Harrer, A. Germing, A. Mugge, and B. Lemke. Stents: material, surface texture and design, in theory and practice. Minim. Invasive Ther. Allied Technol. 11:157–163, 2002.

    Article  Google Scholar 

  18. Gua, X. N., W. Zheng, Y. Cheng, and Y. F. Zheng. A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate. Acta Biomater. 5(7):2790–2799, 2009.

    Article  Google Scholar 

  19. Guan, S. K., L. Peng, C. L. Wen, and Q. Luo. Electrochemical fabrication and biocompatibility of the hydroxyapatite coating on magnesium alloy for implanted applications. Magnes. Technol. 367–371, 2008.

  20. Hawke, D., and D. L. Albright. A phosphate–permanganate conversion coating for magnesium. Met. Finish. 93(10):34, 1995.

    Article  CAS  Google Scholar 

  21. Hillis, J. Surface engineering of magnesium alloys. In: ASM Handbook, Vol. 5. ASM International, Materials Park, OH, 1994, p. 819.

  22. Hiraga, H., T. Inoue, Y. Kojima, S. Kamado, and S. Watanabe. Abnormal platelet Ca2+ handling accompanied by increased cytosolic free Mg2+ in essential hypertension. Mater. Sci. Forum 253:350–351, 2000.

    Google Scholar 

  23. Hiromoto, S., T. Shishido, A. Yamamoto, N. Maruyama, H. Somekawa, and T. Mukai. Precipitation control of calcium phosphate on pure magnesium by anodization. Corros. Sci. 50:2906–2913, 2008.

    Article  CAS  Google Scholar 

  24. Huang, J. J., Y. B. Ren, B. C. Zhang, and K. Yang. Preparation and property of coating on degradable Mg implant. Chinese J. Nonferrous Met. 17:1465–1469, 2007.

    CAS  Google Scholar 

  25. Huo, H. W., Y. Li, and F. H. Wang. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corros. Sci. 46:1467–1477, 2004.

    Article  CAS  Google Scholar 

  26. Kasemo, B. Biological surface science. Curr. Opin. Solid State Mater. Sci. 3:451–459, 1998.

    Article  CAS  Google Scholar 

  27. Kim, H. M., F. Miyaji, T. Kokubo, and T. Nakamura. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res. 32:409–417, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Kouisni, L., M. Azzi, M. Zertoubi, F. Dalard, and S. Maximovitch. Phosphate coatings on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films. Surf. Coat. Technol. 185(1):58–67, 2004.

    Article  CAS  Google Scholar 

  29. Kowalski, Z. W. Ion sputter induced surface morphology biomedical implications. Vacuum 63:603–608, 2001.

    Article  CAS  Google Scholar 

  30. Kutschera, U., and R. Galun. Wear behaviour of laser surface treated, magnesium alloys. In: Magnesium Technology 2000. The Minerals, Metals and Materials Society, 2000, p. 330.

  31. Kuwahara, H., Y. Al-Abdullat, N. Mazaki, S. Tsutsumi, and T. Aizawa. Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution. Mater. Trans. 42(7):1317–1321, 2001.

    Article  CAS  Google Scholar 

  32. Li, D. J., F. Z. Cui, Q. L. Feng, and J. Zhao. Oxygen ion beam and plasma induced blood compatibility of polyetherurethane. Chinese Phys. Lett. 14:531–534, 1997.

    Article  CAS  Google Scholar 

  33. Li, L., J. Gao, and Y. Wang. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185:92–98, 2004.

    Article  CAS  Google Scholar 

  34. Li, Z. J., X. N. Gu, S. Q. Lou, and Y. F. Zheng. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10):1329–1344, 2008.

    Article  PubMed  CAS  Google Scholar 

  35. Li, D. J., and J. Zhao. The structure and biomedical behavior of ion implanted and plasma polymerized segmented polyurethane. Appl. Surf. Sci. 78:195–201, 1994.

    Article  CAS  Google Scholar 

  36. Li, D. J., J. Zhao, H. Q. Gu, M. Z. Lu, F. Q. Ding, and Q. Q. Zhang. Surface modification of medical polyurethane by silicon ion bombardment. Nucl. Instrum. Methods B 82:57, 1993.

    Article  CAS  Google Scholar 

  37. Liu, C. L., Y. C. Xin, G. Y. Tang, and P. K. Chua. Influence of heat treatment on degradation behavior of bio-degradabledie-cast AZ63 magnesium alloy in simulated body fluid. Mater. Sci. Eng. A 456:350–357, 2007.

    Article  Google Scholar 

  38. Lloyd, A. W. Interfacial bioengineering to enhance surface biocompatibility. Med. Device Technol. 13:18–21, 2002.

    PubMed  Google Scholar 

  39. Lucchini, J. P., J. L. Aurelle, M. Therin, K. Donath, and W. Becker. A pilot study comparing screw-shaped implants: surface analysis and histologic evaluation of bone healing. Clin. Oral Implants Res. 7(4):397–404, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Mani, G., M. D. Feldman, D. Patel, and C. M. Agrawal. Coronary stents: a materials perspective. Biomaterials 28:1689–1710, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Nakatsugawa, I. Surface modification technology for magnesium products. In: International Magnesium Association, 1996, p. 24.

  42. Nayab, S. N., F. H. Jones, and I. Olsen. Modulation of the human bone cell cycle by calcium ion-implantation of titanium. Biomaterials 28:38–44, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Neubert, V., A. Bakkar, and C. A. Huang. In: Proceedings of the 7th International Conference on Magnesium Alloys and their Applications. Weinheim: Wiley-VCH, 2006, p. 842.

  44. Nie, X., A. Leyland, and A. Matthews. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf. Coat. Technol. 125(1-3):407–414, 2000.

    Article  CAS  Google Scholar 

  45. Nishiguchi, S., S. Fujibayashi, H. M. Kim, T. Kokubo, and T. Nakamura. J. Biomed. Mater. Res. 67A:26–35, 2003.

    Article  CAS  Google Scholar 

  46. Niu, L. Y., Z. H. Jiang, G. Y. Li, C. D. Gu, and J. S. Lian. A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surf. Coat. Technol. 200(9):3021–3026, 2006.

    Article  CAS  Google Scholar 

  47. Ohring, M. (ed.). Materials Sciences of Thin Film: Deposition and Structure. USA: Academic Press Ltd, p. 277, 1992.

    Google Scholar 

  48. Olivier, V., N. Faucheux, and P. Hardouin. Biomaterial challenges and approaches to stem cell use in reconstructive surgery. Drug Discov. Today 9:803–811, 2004.

    Article  PubMed  CAS  Google Scholar 

  49. Ong, J. L., and L. C. Lucas. Auger electron spectroscopy and its use for the characterization of titanium and hydroxyapatite surfaces. Biomaterials 19:455–464, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Paital, S. R., and N. B. Dahotre. Calcium phosphate coatings for bio-implant applications: materials performance factors, and methodologies. Mater. Sci. Eng. R 66:1–70, 2009.

    Article  Google Scholar 

  51. Pardo, A., M. C. Merino, M. Mohedano, P. Casajús, A. E. Coy, and R. Arrabal. Corrosion behaviour of Mg/Al alloys with composite coatings. Surf. Coat. Technol. 203:1252–1263, 2009.

    Article  CAS  Google Scholar 

  52. Pelka, A., G. Ostrowski, P. Niedzielski, R. Johnston, D. Stroz, H. Morawiec, and A. Sysa. Carbon coatings onto shape memory alloys. J. Wide Bandgap Mater. 8:189–194, 2001.

    Article  CAS  Google Scholar 

  53. Qiao, L. Y., J. C. Gao, and Y. Wang. Corrosion degradation of surface modified bio-magnesium materials by heat-sely-assembled monolayer. Chinese J. Mater. Res. 23:153–157, 2009.

    CAS  Google Scholar 

  54. Ramsden, J. J., D. M. Allen, D. J. Stephenson, J. R. Alcock, G. N. Peggs, G. Fuller, and G. Goch. The design and manufacture of biomedical surfaces. Ann. CIRP 56(2):687–711, 2007.

    Article  Google Scholar 

  55. Rickerby, D. S., and A. Matthews (eds.). Advanced Surface Coatings, a Handbook of Surface Engineering. London: Blackie, 1991.

    Google Scholar 

  56. Rie, K. T. Recent advances in plasma diffusion processes. Surf. Coat. Technol. 112(1-3):56–62, 1999.

    Article  CAS  Google Scholar 

  57. Ross, P. N., J. A. MacCullouch, and R. J. Esdaile. Anodizing magnesium die castings. In: Transactions 20th International Die Casting Congress, 1999.

  58. Rucdi, T. P., and W. M. Murphy. AO Principle of Fracture Management. Dübendorf: AO Publishing, pp. 13–14, 2002.

    Google Scholar 

  59. Rudd, A. L., C. B. Breslin, and F. Mansfeld. The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corros. Sci. 42(2):275–288, 2000.

    Article  CAS  Google Scholar 

  60. Song, G. L. Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49(4):1696–1701, 2007.

    Article  CAS  Google Scholar 

  61. Staiger, M. P., A. M. Pietak, J. Huadmai, and G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.

    Article  PubMed  CAS  Google Scholar 

  62. Sul, Y. T., C. B. Johansson, K. T. Roser, and T. Albrektsson. Qualitative and quantitative observations of bone tissue reactions to anodized implants. Biomaterials 23:1809–1817, 2002.

    Article  PubMed  CAS  Google Scholar 

  63. Tay, B. K., Z. W. Zhao, and D. H. C. Chua. Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng. R 52:1–48, 2006.

    Article  Google Scholar 

  64. Wagner, L., M. Hilpert, J. Wendt, and B. Kuster. On methods for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80. Mater. Sci. Forum 419–422:93–102, 2003.

    Article  Google Scholar 

  65. Wan, Y. Z., G. Y. Xiong, H. L. Luo, F. He, Y. Huang, and Y. L. Wang. Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys. Appl. Surf. Sci. 2008, doi:10.1016/j.apsusc.2008./02.117.

  66. Wang, H., Y. Estrin, and Z. Zúberová. Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett. 62:2476–2479, 2008.

    Article  CAS  Google Scholar 

  67. Wang, X., X. Ma, L. Wang, X. Du, Y. Huang, and F. Cui. Fast deposition of hydroxyapatite coating on titanium to modify cell affinity of corneal fibroblast in vitro. Front. Mater. Sci. China 1(4):410–414, 2007.

    Article  Google Scholar 

  68. Wei, G. B., and P. X. Ma. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757, 2004.

    Article  PubMed  CAS  Google Scholar 

  69. Williams, D. A registry for tissue engineering clinical trials. Med. Device Technol. 17(5):8–10, 2006.

    Google Scholar 

  70. Wilson, D. J., N. P. Rhodes, and R. L. Williams. Surface modification of a segmented polyetherurethane using a low powered gas plasma and its influence on the activation of the coagulation system. Biomaterials 24:5069–5081, 2003.

    Article  PubMed  CAS  Google Scholar 

  71. Wintermantel, E., J. Mayer, J. Blum, K. L. Eckert, P. Luscher, and M. Mathey. Tissue engineering scaffolds using superstructures. Biomaterials 17:83–91, 1996.

    Article  PubMed  CAS  Google Scholar 

  72. Witte, F. The history of biodegradable magnesium implants: a review. Acta Biomater. 6:1680–1692, 2010.

    Article  PubMed  CAS  Google Scholar 

  73. Witte, F., J. Fischer, J. Nellesen, H. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterial 27(7):1013–1018, 2006.

    Article  CAS  Google Scholar 

  74. Witte, F., J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, and F. Beckmann. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater. 6:1792–1799, 2010.

    Article  PubMed  CAS  Google Scholar 

  75. Witte, F., N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, and F. Feyerabend. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12(5–6):63–72, 2008.

    Article  CAS  Google Scholar 

  76. Witte, F., J. Reifenrath, P. P. Müller, H.-A. Crostack, J. Nellesen, F. W. Bach, D. Bormann, and M. Rudert. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materwiss. Werksttech. 37:504–508, 2006.

    Article  CAS  Google Scholar 

  77. Wu, C. Chemical Conversion Film, Chinese Society of Corrosion and Protection of Metals. Beijing: Chemical Industrial Press, 1988; (in Chinese).

    Google Scholar 

  78. Wu, G. S., X. Q. Zeng, S. S. Yao, and X. M. Wang. Formation of a novel nanocrystalline coating on AZ31 magnesium alloy by bias sputtering. Mater. Lett. 61:4019–4022, 2007.

    Article  CAS  Google Scholar 

  79. Xin, Y. C., C. L. Liu, K. F. Huo, G. Y. Tang, X. B. Tian, and P. K. Chu. Corrosion behavior of ZrN/Zr coated biomedical AZ91 magnesium alloy. Surf. Coat. Technol. 203:2554–2557, 2009.

    Article  CAS  Google Scholar 

  80. Xu, X. H., J. Cheng, C. H. Zhang, X. L. Yan, T. B. Zhu, K. D. Yao, L. Cao, and Y. Liu. Bio-corrosion and polymer coating modification of magnesium alloys for medicine. Rare Met. Mater. Eng. 37:1225–1228, 2008.

    CAS  Google Scholar 

  81. Xu, L. P., G. N. Yu, E. L. Zhang, F. Pan, and K. Yang. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J. Biomed. Mater. Res. A 83(3):703–711, 2007.

    PubMed  Google Scholar 

  82. Xu, L. P., E. L. Zhang, and K. Yang. Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application. J. Mater. Sci. Mater. Med. 20:859–867, 2009. doi:10.1007/s10856-008-3648-2.

    Article  PubMed  CAS  Google Scholar 

  83. Yang, J. X., F. Z. Cui, I. S. Lee, Y. P. Jiao, Q. S. Yin, and Y. Zhang. Ion-beam assisted deposited C–N coating on magnesium alloys. Surf. Coat. Technol. 202:5737–5741, 2008.

    Article  CAS  Google Scholar 

  84. Yang, J. X., F. Z. Cui, I.-S. Lee, Y. Zhang, and Q. S. Yin. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J. Biomater. Appl. (accepted).

  85. Yang, J. X., F. Z. Cui, Q. S. Yin, Y. Zhang, T. Zhang, and X. M. Wang. Characterization and degradation study of calcium phosphate coating on magnesium alloy bone implant in vitro. IEEE Trans. Plasma Sci. 37(7):1161–1168, 2008.

    Article  Google Scholar 

  86. Yang, J. X., Y. P. Jiao, F. Z. Cui, I. S. Lee, Q. S. Yin, and Y. Zhang. Modification of degradation behavior of magnesium alloy by IBAD coating of calcium phosphate. Surf. Coat. Technol. 202:5733–5736, 2008.

    Article  CAS  Google Scholar 

  87. Yang, J. X., Y. P. Jiao, Q. S. Yin, Y. Zhang, and T. Zhang. Calcium phosphate coating on magnesium alloy for modification of degradation behavior. Front. Mater. Sci. China 2(2):149–155, 2008.

    Article  Google Scholar 

  88. Zhang, J., Y. Wang, R. C. Zeng, and W. J. Huang. Effects of coated AZ91D magnesium alloy. Mater. Sci. Forum 529:546–549, 2007.

    Google Scholar 

  89. Zhang, X. P., Z. P. Zhao, F. M. Wu, Y. L. Wang, and J. Wu. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution. J. Mater. Sci. 42:8523–8528, 2007.

    Article  CAS  Google Scholar 

  90. Zhao, Q., G. J. Zhai, D. H. L. NG, X. Z. Zhang, and Z. Q. Chen. Surface modification of Al2O3 bioceramic by NH2+ ion implantation. Biomaterials 20:595, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant (code #: 2009K000435) from Center for Nanostructured Materials Technology under 21st Century Frontier R&D Program of the Ministry of Education, Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuzhai Cui or In Seop. Lee.

Additional information

Associate Editor Laura Suggs oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Cui, F. & Lee, I.S. Surface Modifications of Magnesium Alloys for Biomedical Applications. Ann Biomed Eng 39, 1857–1871 (2011). https://doi.org/10.1007/s10439-011-0300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0300-y

Keywords

Navigation