Skip to main content
Log in

A Stretching Device for High-Resolution Live-Cell Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Several custom-built and commercially available devices are available to investigate cellular responses to substrate strain. However, analysis of structural dynamics by microscopy in living cells during stretch is not readily feasible. We describe a novel stretch device optimized for high-resolution live-cell imaging. The unit assembles onto standard inverted microscopes and applies constant magnitude or cyclic stretch at physiological magnitudes to cultured cells on elastic membranes. Interchangeable modular indenters enable delivery of equibiaxial and uniaxial stretch profiles. Strain analysis performed by tracking fluorescent microspheres adhered onto the substrate demonstrated reproducible application of stretch profiles. In endothelial cells transiently expressing enhanced green fluorescent protein (EGFP)-vimentin and paxillin-DsRed2 and subjected to constant magnitude equibiaxial stretch, the two-dimensional strain tensor demonstrated efficient transmission through the extracellular matrix and focal adhesions. Decreased transmission to the intermediate filament network was measured, and a heterogeneous spatial distribution of maximum stretch magnitude revealed discrete sites of strain focusing. Spatial correlation of vimentin and paxillin displacement vectors provided an estimate of the extent of mechanical coupling between the structures. Interestingly, switching the spatial profile of substrate strain reveals that actin-mediated edge ruffling is not desensitized to repeated mechanostimulation. These initial observations show that the stretch device is compatible with live-cell microscopy and is a novel tool for measuring dynamic structural remodeling under mechanical strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

EGFP:

Enhanced green fluorescent protein

FA:

Focal adhesion

IF:

Intermediate filament

IR:

Indenter ring

MHR:

Membrane holder ring

MP:

Mobile plate

References

  1. Arold, S. P., J. Y. Wong, and B. Suki. Design of a new stretching apparatus and the effects of cyclic strain and substratum on mouse lung epithelial-12 cells. Ann. Biomed. Eng. 35:1156–1164, 2007.

    Article  PubMed  Google Scholar 

  2. Barbee, K. A., E. J. Macarak, and L. E. Thibault. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. Ann. Biomed. Eng. 22:14–22, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Brown, C. M., B. Hebert, D. L. Kolin, J. Zareno, L. Whitmore, A. R. Horwitz, and P. W. Wiseman. Probing the integrin-actin linkage using high-resolution protein velocity mapping. J. Cell Sci. 119:5204–5214, 2006.

    Article  CAS  PubMed  Google Scholar 

  4. Caille, N., Y. Tardy, and J. J. Meister. Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann. Biomed. Eng. 26:409–416, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Choi, C. K., and B. P. Helmke. Short-term shear stress induces rapid actin dynamics in living endothelial cells. Mol. Cell. Biomech. 5:247–258, 2008.

    PubMed  Google Scholar 

  6. Clark, C. B., T. J. Burkholder, and J. A. Frangos. Uniaxial strain system to investigate strain rate regulation in vitro. Rev. Sci. Instrum. 72:2415–2422, 2001.

    Article  CAS  Google Scholar 

  7. Geddes, D. M., and R. S. Cargill, 2nd. An in vitro model of neural trauma: Device characterization and calcium response to mechanical stretch. J. Biomech. Eng. 123:247–255, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Haga, J. H., Y. S. Li, and S. Chien. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J. Biomech. 40:947–960, 2007.

    Article  PubMed  Google Scholar 

  9. Helmke, B. P. Molecular control of cytoskeletal mechanics by hemodynamic forces. Physiology 20:43–53, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Helmke, B. P., R. D. Goldman, and P. F. Davies. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86:745–752, 2000.

    CAS  PubMed  Google Scholar 

  11. Helmke, B. P., A. B. Rosen, and P. F. Davies. Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84:2691–2699, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Hiraoka, Y., J. W. Sedat, and D. A. Agard. Determination of three-dimensional properties of a light microscope system: Partial confocal behavior in epifluorescence microscopy. Biophys. J. 57:325–333, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Hu, K., L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer. Differential transmission of actin motion within focal adhesions. Science 315:111–115, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Hung, C. T., and J. L. Williams. A method for inducing equi-biaxial and uniform strains in elastomeric membranes used as cell substrates. J. Biomech. 27:227–232, 1994.

    Article  CAS  PubMed  Google Scholar 

  15. Iwayoshi, S., K. Furukawa, and T. Ushida. Continuous visualization of morphological changes in endothelial cells in response to cyclic stretch. JSME Int. J. Ser. C, Mech. Syst. Mach. Elem. Manuf. 49:545–555, 2006.

    Google Scholar 

  16. Katsumi, A., J. Milanini, W. B. Kiosses, M. A. Del Pozo, R. Kaunas, S. Chien, K. M. Hahn, and M. A. Schwartz. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158:153–164, 2002.

    Article  CAS  PubMed  Google Scholar 

  17. Keller, R., D. Shook, and P. Skoglund. The forces that shape embryos: Physical aspects of convergent extension by cell intercalation. Phys. Biol. 5:15007, 2008.

    Article  Google Scholar 

  18. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. Mackenna, F. J. Villarreal, and A. D. Mcculloch. An equibiaxial strain system for cultured cells. Am. J. Physiol. 271:C1400–C1408, 1996.

    CAS  PubMed  Google Scholar 

  19. Li, Y. S., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005.

    Article  PubMed  Google Scholar 

  20. Moretti, M., A. Prina-Mello, A. J. Reid, V. Barron, and P. J. Prendergast. Endothelial cell alignment on cyclically-stretched silicone surfaces. J. Mater. Sci.: Mater. Med. 15:1159–1164, 2004.

    Article  CAS  Google Scholar 

  21. Mott, R. E., and B. P. Helmke. Mapping the dynamics of shear stress-induced structural changes in endothelial cells. Am. J. Physiol. 293:C1616–C1626, 2007.

    Article  CAS  Google Scholar 

  22. Orr, A. W., B. P. Helmke, B. R. Blackman, and M. A. Schwartz. Mechanisms of mechanotransduction. Dev. Cell 10:11–20, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Poh, Y.-C., S. Na, F. Chowdhury, M. Ouyang, Y. Wang, and N. Wang. Rapid activation of Rac GTPase in living cells by force is independent of Src. PLoS ONE 4:e7886, 2009.

    Article  PubMed  Google Scholar 

  24. Rana, O. R., C. Zobel, E. Saygili, K. Brixius, F. Gramley, T. Schimpf, K. Mischke, D. Frechen, C. Knackstedt, R. H. Schwinger, and P. Schauerte. A simple device to apply equibiaxial strain to cells cultured on flexible membranes. Am. J. Physiol. 294:H532–H540, 2008.

    CAS  Google Scholar 

  25. Schaffer, J. L., M. Rizen, G. J. L’italien, A. Benbrahim, J. Megerman, L. C. Gerstenfeld, and M. L. Gray. Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. J. Orthop. Res. 12:709–719, 1994.

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz, M. A., and D. W. Desimone. Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20:551–556, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Sotoudeh, M., S. Jalali, S. Usami, J. Y. J. Shyy, and S. Chien. A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells. Ann. Biomed. Eng. 26:181–189, 1998.

    Article  CAS  PubMed  Google Scholar 

  28. Waters, C. M., M. R. Glucksberg, E. P. Lautenschlager, C.-W. Lee, R. M. Van Matre, R. J. Warp, U. Savla, K. E. Healy, B. Moran, D. G. Castner, and J. P. Bearinger. A system to impose prescribed homogenous strains on cultured cells. J. Appl. Physiol. 91:1600–1610, 2001.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Martin Schwartz and Doug DeSimone for helpful discussions during the design of the stretch device. This study was supported by a grant from the UVa Office of the Vice President for Research and Graduate Studies and by NIH grants HL-071958 and HL-080956.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Helmke.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Mathieu, P.S. & Helmke, B.P. A Stretching Device for High-Resolution Live-Cell Imaging. Ann Biomed Eng 38, 1728–1740 (2010). https://doi.org/10.1007/s10439-010-9968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9968-7

Keywords

Navigation