Skip to main content
Log in

Hypothermic Machine Perfusion of Kidney Grafts: Which Pressure is Preferred?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To assess the effect of the perfusion pressure (PP) during machine perfusion (MP) on the preservation quality of kidney grafts, we compared mean PPs of 25 and 30 mmHg using a porcine autotransplantation model. After assessment of the microcirculation, animals underwent left nephrectomy. Thereafter, kidneys were washed out followed by 20 h of MP at 25 mmHg (MP25, n = 7) or 30 mmHg (MP30, n = 7) using a novel MP system for hypothermic pulsatile perfusion. After MP preservation, the contralateral kidneys were removed and the preserved kidneys heterotopically autotransplanted. Ten minutes after reperfusion, the microcirculation was reassessed. Seven days posttransplant, animals were euthanized and the kidney grafts removed for histological analysis. MP using a mean PP of 25 mmHg resulted in higher capillary blood flow after reperfusion. In the MP30 group, 6 out of 7 animals survived, whereas in the MP25 group all animals survived. Overall, improvement in recovery of renal function and a better preservation of structural integrity were seen in the MP25 group compared to the MP30 group. Using a novel system for hypothermic MP, a mean PP of 25 mmHg is preferred over a mean PP of 30 mmHg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

PP:

Perfusion pressure

MP:

Machine perfusion

CS:

Cold storage

References

  1. Balupuri, S., P. Buckley, M. Mohamed, C. Cornell, D. Mantle, J. Kirby, D. M. Manas, and D. Talbot. Assessment of non-heart-beating donor (NHBD) kidneys for viability on machine perfusion. Clin. Chem. Lab. Med. 38:1103–1106, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Belzer, F. O., B. S. Ashby, P. F. Gulyassy, and M. Powell. Successful seventeen-hour preservation and transplantation of human-cadaver kidney. N. Engl. J. Med. 278:608–610, 1968.

    Article  CAS  PubMed  Google Scholar 

  3. Belzer, F. O., B. Ashby, J. S. Huang, and J. E. Dunphy. Etiology of rising perfusion pressure in isolated organ perfusion. Ann. Surg. 168:382–391, 1968.

    Article  CAS  PubMed  Google Scholar 

  4. Brook, N. R., A. J. Knight, and M. L. Nicholson. Intra-renal resistance reflects warm ischaemic damage, and is further increased by static cold storage: a model of non-heart-beating donor kidneys. Med. Sci. Monit. 9:271–275, 2003.

    Google Scholar 

  5. Doorschodt, B. M., M. Bessems, A. K. van Vliet, and T. M. van Gulik. The first disposable perfusion preservation system for kidney and liver grafts. Ann. Transplant. 9:40–41, 2004.

    CAS  PubMed  Google Scholar 

  6. Fuller, B. J., and C. Y. Lee. Hypothermic perfusion preservation: the future of organ preservation revisited? Cryobiology 54:129–145, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Fung, Y. C. Biomechanics. Circulation (2nd ed.). New York: Springer, 1997.

    Google Scholar 

  8. Garfield, S. S., A. W. Poret, and R. W. Evans. The cost-effectiveness of organ preservation methods in renal transplantation: US projections based on the machine preservation trial. Transplant. Proc. 41:3531–3536, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Gattone, V. H., R. S. Filo, A. P. Evan, S. B. Leapman, E. J. Smith, and F. C. Luft. Time course of glomerular endothelial injury related to pulsatile perfusion preservation. Transplantation 39:396–399, 1985.

    Article  PubMed  Google Scholar 

  10. Groen, H., C. Moers, J. M. Smits, J. Treckmann, D. Monbaliou, A. Rahmel, A. Paul, J. Pirenne, R. J. Ploeg, and E. Buskens. Long-term cost-effectiveness of hypothermic perfusion versus cold storage in kidney transplantation. Am. J. Transplant. 9(Suppl 2):227, 2009.

    Google Scholar 

  11. Hoffmann, R. M., J. H. Southard, M. Lutz, A. Mackety, and F. O. Belzer. Synthetic perfusate for kidney preservation: its use in 72-hour preservation of dog kidneys. Arch. Surg. 118:919–921, 1983.

    CAS  PubMed  Google Scholar 

  12. Hosgood, S., B. Yang, A. Bagul, I. H. Mohamed, and M. L. Nicholson. A comparison of hypothermic machine preservation versus static cold storage in an experimental model of renal ischemia reperfusion injury. Transplantation 89:830–837, 2010.

    Article  PubMed  Google Scholar 

  13. Krug, A. Mikrozirkulation und Sauerstoff versorgung des Gewebes, Methode des so genannten O2C (oxygen to see). Phlebologie 36:300–312, 2007.

    Google Scholar 

  14. Leemans, J. C., G. Stokman, N. Claessen, K. M. Rouschop, G. J. Teske, C. J. Kirschning, S. Akira, T. van der Poll, J. J. Weening, and S. Florquin. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115:2894–2903, 2005.

    Article  CAS  PubMed  Google Scholar 

  15. Maathuis, M. H., S. Manekeller, A. van der Plaats, H. G. Leuvenink, N. A. ‘t Hart, A. B. Lier, G. Rakhorst, R. J. Ploeg, and T. Minor. Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann. Surg. 246:982–988, 2007.

    Article  PubMed  Google Scholar 

  16. Matsuno, N., E. Sakurai, I. Tamaki, K. Furuhashi, A. Saito, S. Zhang, K. Kozaki, A. Shimada, K. Miyamoto, and M. Kozaki. Effectiveness of machine perfusion preservation as a viability determination method for kidneys procured from non-heart beating donors. Transplant. Proc. 26:2421–2422, 1994.

    CAS  PubMed  Google Scholar 

  17. Moers, C., J. M. Smits, M. H. Maathuis, J. Treckmann, F. van Gelder, B. P. Napieralski, M. Van Kasterop-Kutz, J. J. van der Heide, J. P. Squifflet, E. Van Heurn, G. R. Kirste, A. Rahmel, H. G. Leuvenink, A. Paul, J. Pirenne, and R. J. Ploeg. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Eng. J. Med. 360:7–19, 2009.

    Article  CAS  Google Scholar 

  18. Nicholson, M. L., S. A. Hosgood, M. S. Metcalfe, J. R. Waller, and N. R. Brook. A comparison of renal preservation by cold storage and machine perfusion using a porcine autotransplant model. Transplantation 78:333–337, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Pusztaszeri, M. P., W. Seelentag, and F. T. Bosman. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand Factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54(4):385–395, 2006.

    Article  CAS  PubMed  Google Scholar 

  20. Schreinemachers, M. C., B. M. Doorschodt, S. Florquin, M. A. van den Bergh Weerman, J. B. Reitsma, W. Lai, M. Sitzia, T. M. Minor, R. H. Tolba, and T. M. van Gulik. Improved preservation and microcirculation with POLYSOL after transplantation in a porcine kidney autotransplantation model. Nephrol. Dial. Transplant. 24:816–824, 2009.

    Article  PubMed  Google Scholar 

  21. Schreinemachers, M. C., B. M. Doorschodt, S. Florquin, M. A. van den Bergh Weerman, A. Zernecke, M. M. Idu, R. H. Tolba, and T. M. van Gulik. Pulsatile perfusion preservation of warm ischaemia-damaged experimental kidney grafts. Br. J. Surg. 97:349–358, 2010.

    Article  CAS  PubMed  Google Scholar 

  22. St Peter, S. D., C. J. Imber, and P. J. Friend. Liver and kidney preservation by perfusion. Lancet 359:604–613, 2002.

    Article  PubMed  Google Scholar 

  23. Szust, J., L. Olson, and L. Cravero. A comparison of OPO pulsatile machine preservation practices and results. J. Transpl. Coord. 9:97–100, 1999.

    CAS  PubMed  Google Scholar 

  24. Treckmann, J., M. Nagelschmidt, T. Minor, F. Saner, S. Saad, and A. Paul. Function and quality of kidneys after cold storage, machine perfusion, or retrograde oxygen persufflation: results from a porcine autotransplantation model. Cryobiology 59:19–23, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mario Sitzia, Wei Lai, Mareike Schulz, and Ute Lohmer for their continuous support. This study was in part sponsored by Doorzand Medical Innovations BV, Amsterdam, The Netherlands (the company ceased operations as per August 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Tolba.

Additional information

Associate Editor Stefan Jockenhoevel oversaw the review of this article.

This study was performed at the House of Experimental Therapy, University Clinic of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany and in part at the affiliations mentioned above.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doorschodt, B.M., Schreinemachers, M.C.J.M., Behbahani, M. et al. Hypothermic Machine Perfusion of Kidney Grafts: Which Pressure is Preferred?. Ann Biomed Eng 39, 1051–1059 (2011). https://doi.org/10.1007/s10439-010-0228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0228-7

Keywords

Navigation