Skip to main content
Log in

Systems Analysis of the Role of Bone Morphogenic Protein 4 in Endothelial Inflammation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Shear stress is an important factor in the onset and progression of atherosclerosis. High and unidirectional laminar stress is seen as protective, while low and oscillatory shear stress is considered pro-inflammatory and pro-atherogenic. The mechanosensitive response of endothelial cells is governed by a complex system of genes, proteins, and signals that operate at distinctly different time scales. We propose a dynamic mathematical model that quantitatively describes this mechanosensing system and permits novel insights into its functioning. The model, the first of its kind, is constructed within the guidelines of Biochemical Systems Theory and accounts for different time scales by means of approximated delays. Parameter values are obtained directly from biochemical observations in an ad hoc fashion. The model reflects most documented observations well and leads to a number of predictions and novel hypotheses. In particular, it demonstrates the crucial role of Bone Morphogenic Protein 4 and p47phox-dependent NADPH oxidases in endothelial inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Ago, T., F. Kuribayashi, H. Hiroaki, R. Takeya, T. Ito, D. Kohda, and H. Sumimoto. Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc. Natl. Acad. Sci. USA 100(8):4474–4479, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Alom-Ruiz, S. P., N. Anilkumar, and A. M. Shah. Reactive oxygen species and endothelial activation. Antioxid. Redox Signal. 10(6):1089–1100, 2008.

    Article  CAS  PubMed  Google Scholar 

  3. Babior, B. M. NADPH oxidase: an update. Blood 93(5):1464–1476, 1999.

    CAS  PubMed  Google Scholar 

  4. Boo, Y. C., J. Hwang, M. Sykes, B. J. Michell, B. E. Kemp, H. Lum, and H. Jo. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 283(5):H1819–H1828, 2002.

    CAS  PubMed  Google Scholar 

  5. Boo, Y. C., and H. Jo. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am. J. Physiol. Cell Physiol. 285(3):C499–C508, 2003.

    CAS  PubMed  Google Scholar 

  6. Brandes, R. P., and J. Kreuzer. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc. Res. 65(1):16–27, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Brooks, A. R., P. I. Lelkes, and G. M. Rubanyi. Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow. Physiol. Genomics 9(1):27–41, 2002.

    CAS  PubMed  Google Scholar 

  8. Cai, H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68(1):26–36, 2005.

    Article  CAS  PubMed  Google Scholar 

  9. Cai, H. NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ. Res. 96(8):818–822, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Cave, A. C., A. C. Brewer, A. Narayanapanicker, R. Ray, D. J. Grieve, S. Walker, and A. M. Shah. NADPH oxidases in cardiovascular health and disease. Antioxid. Redox Signal. 8(5–6):691–728, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Chang, K., D. Weiss, J. Suo, J. D. Vega, D. Giddens, W. R. Taylor, and H. Jo. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: role of bone morphogenic protein antagonists in inflammation and atherosclerosis. Circulation 116(11):1258–1266, 2007.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, G., Z. Cao, X. Xu, E. G. van Meir, and J. D. Lambeth. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269(1–2):131–140, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Chou, I. C., and E. O. Voit. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219:57–83, 2009.

    Google Scholar 

  14. Clempus, R. E., and K. K. Griendling. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 71(2):216–225, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Collins, T. Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion. Lab. Invest. 68(5):499–508, 1993.

    CAS  PubMed  Google Scholar 

  16. Csiszar, A., N. Labinskyy, K. E. Smith, A. Rivera, E. N. Bakker, H. Jo, J. Gardner, Z. Orosz, and Z. Ungvari. Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells: role of shear stress and the cAMP/protein kinase A pathway. Arterioscler. Thromb. Vasc. Biol. 27(4):776–782, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3):519–560, 1995.

    CAS  PubMed  Google Scholar 

  18. De Keulenaer, G. W., D. C. Chappell, N. Ishizaka, R. M. Nerem, R. W. Alexander, and K. K. Griendling. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ. Res. 82(10):1094–1101, 1998.

    PubMed  Google Scholar 

  19. Dimmeler, S., C. Hermann, J. Galle, and A. M. Zeiher. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler. Thromb. Vasc. Biol. 19(3):656–664, 1999.

    CAS  PubMed  Google Scholar 

  20. Duerrschmidt, N., C. Stielow, G. Muller, P. J. Pagano, and H. Morawietz. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J. Physiol. 576(Pt 2):557–567, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Gimbrone, Jr., M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. NY Acad. Sci. 902:230–239, 2000; discussion 239–40.

    Article  CAS  PubMed  Google Scholar 

  22. Go, Y. M., Y. C. Boo, H. Park, M. C. Maland, R. Patel, K. A. Pritchard, Jr., Y. Fujio, K. Walsh, V. Darley-Usmar, and H. Jo. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress. J. Appl. Physiol. 91(4):1574–1581, 2001.

    CAS  PubMed  Google Scholar 

  23. Goel, G., I. C. Chou, and E. O. Voit. Biological systems modeling and analysis: a biomolecular technique of the twenty-first century. J. Biomol. Tech. 17(4):252–269, 2006.

    PubMed  Google Scholar 

  24. Goel, G., I. C. Chou, and E. O. Voit. System estimation from metabolic time-series data. Bioinformatics 24(21):2505–2511, 2008.

    Article  CAS  PubMed  Google Scholar 

  25. Griendling, K. K. Novel NAD(P)H oxidases in the cardiovascular system. Heart 90(5):491–493, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Griendling, K. K., D. Sorescu, B. Lassegue, and M. Ushio-Fukai. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol. 20(10):2175–2183, 2000.

    CAS  PubMed  Google Scholar 

  27. Hilenski, L. L., R. E. Clempus, M. T. Quinn, J. D. Lambeth, and K. K. Griendling. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24(4):677–683, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Hwang, J., M. H. Ing, A. Salazar, B. Lassegue, K. Griendling, M. Navab, A. Sevanian, and T. K. Hsiai. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ. Res. 93(12):1225–1232, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Hwang, J., A. Saha, Y. C. Boo, G. P. Sorescu, J. S. McNally, S. M. Holland, S. Dikalov, D. P. Giddens, K. K. Griendling, D. G. Harrison, and H. Jo. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J. Biol. Chem. 278(47):47291–47298, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Inoue, N., S. Ramasamy, T. Fukai, R. M. Nerem, and D. G. Harrison. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ. Res. 79(1):32–37, 1996.

    CAS  PubMed  Google Scholar 

  31. Jo, H., H. Song, and A. Mowbray. Role of NADPH oxidases in disturbed flow- and BMP4-induced inflammation and atherosclerosis. Antioxid. Redox Signal. 8(9–10):1609–1619, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Kreyszig, E. Advanced Engineering Mathematics (7th ed.). New York: Wiley, 1993.

    Google Scholar 

  33. Kroll, M. H., J. D. Hellums, Z. Guo, W. Durante, K. Razdan, J. K. Hrbolich, and A. I. Schafer. Protein kinase C is activated in platelets subjected to pathological shear stress. J. Biol. Chem. 268(5):3520–3524, 1993.

    CAS  PubMed  Google Scholar 

  34. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4(3):181–189, 2004.

    Article  CAS  PubMed  Google Scholar 

  35. Lassegue, B., and R. E. Clempus. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285(2):R277–R297, 2003.

    CAS  PubMed  Google Scholar 

  36. Leong, L. M., and P. M. Brickell. Bone morphogenic protein-4. Int. J. Biochem. Cell Biol. 28(12):1293–1296, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Li, J. M., L. M. Fan, M. R. Christie, and A. M. Shah. Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol. Cell. Biol. 25(6):2320–2330, 2005.

    Article  CAS  PubMed  Google Scholar 

  38. Li, J. M., and A. M. Shah. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J. Biol. Chem. 277(22):19952–19960, 2002.

    Article  CAS  PubMed  Google Scholar 

  39. Li, J. M., and A. M. Shah. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J. Biol. Chem. 278(14):12094–12100, 2003.

    Article  CAS  PubMed  Google Scholar 

  40. Libby, P. Inflammation in atherosclerosis. Nature 420(6917):868–874, 2002.

    Article  CAS  PubMed  Google Scholar 

  41. Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 67:753–791, 1998.

    Article  CAS  PubMed  Google Scholar 

  42. McNally, J. S., M. E. Davis, D. P. Giddens, A. Saha, J. Hwang, S. Dikalov, H. Jo, and D. G. Harrison. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am. J. Physiol. Heart Circ. Physiol. 285(6):H2290–H2297, 2003.

    CAS  PubMed  Google Scholar 

  43. Mehta, P. K., and K. K. Griendling. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292(1):C82–C97, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Mohan, S., M. Hamuro, G. P. Sorescu, K. Koyoma, E. A. Sprague, H. Jo, A. J. Valente, T. J. Prihoda, and M. Natarajan. IkappaBalpha-dependent regulation of low-shear flow-induced NF-kappa B activity: role of nitric oxide. Am. J. Physiol. Cell Physiol. 284(4):C1039–C1047, 2003.

    CAS  PubMed  Google Scholar 

  45. Mowbray, A. L., D. H. Kang, S. G. Rhee, S. W. Kang, and H. Jo. Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant. J. Biol. Chem. 283(3):1622–1627, 2008.

    Article  CAS  PubMed  Google Scholar 

  46. Nagel, T., N. Resnick, W. J. Atkinson, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 94(2):885–891, 1994.

    Article  CAS  PubMed  Google Scholar 

  47. Oyehaug, L., E. Plahte, and S. W. Omholt. Targeted reduction of complex models with time scale hierarchy–a case study. Math. Biosci. 185(2):123–152, 2003.

    Article  PubMed  Google Scholar 

  48. Resnick, N., and M. A. Gimbrone, Jr. Hemodynamic forces are complex regulators of endothelial gene expression. Faseb J. 9(10):874–882, 1995.

    CAS  PubMed  Google Scholar 

  49. Rhee, S. G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31(2):53–59, 1999.

    CAS  PubMed  Google Scholar 

  50. Ross, R. Atherosclerosis–an inflammatory disease. N. Engl. J. Med. 340(2):115–126, 1999.

    Article  CAS  PubMed  Google Scholar 

  51. San Martin, A., P. Du, A. Dikalova, B. Lassegue, M. Aleman, M. C. Gongora, K. Brown, G. Joseph, D. G. Harrison, W. R. Taylor, H. Jo, and K. K. Griendling. Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. Am. J. Physiol. Heart Circ. Physiol. 292(5):H2073–H2082, 2007.

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki, K., S. Bannai, and N. Makino. Kinetics of hydrogen peroxide elimination by human umbilical vein endothelial cells in culture. Biochim. Biophys. Acta. 1380(2):275–288, 1998.

    CAS  PubMed  Google Scholar 

  53. Sauer, H., M. Wartenberg, and J. Hescheler. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol. Biochem. 11(4):173–186, 2001.

    Article  CAS  PubMed  Google Scholar 

  54. Savageau, M. A. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol. 25(3):365–369, 1969.

    Article  CAS  PubMed  Google Scholar 

  55. Savageau, M. A., Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Reading, MA: Addison-Wesley Pub (Sd), 199 pp, 1976

  56. Sorescu, D., K. Szocs, and K. K. Griendling. NAD(P)H oxidases and their relevance to atherosclerosis. Trends Cardiovasc. Med. 11(3–4):124–131, 2001.

    Article  CAS  PubMed  Google Scholar 

  57. Sorescu, G. P., M. Sykes, D. Weiss, M. O. Platt, A. Saha, J. Hwang, N. Boyd, Y. C. Boo, J. D. Vega, W. R. Taylor, and H. Jo. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J. Biol. Chem. 278(33):31128–31135, 2003.

    Article  CAS  PubMed  Google Scholar 

  58. Sorescu, G. P., H. Song, S. L. Tressel, J. Hwang, S. Dikalov, D. A. Smith, N. L. Boyd, M. O. Platt, B. Lassegue, K. K. Griendling, and H. Jo. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 95(8):773–779, 2004.

    Article  CAS  PubMed  Google Scholar 

  59. Stone, J. R., and S. Yang. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal. 8(3–4):243–270, 2006.

    Article  CAS  PubMed  Google Scholar 

  60. Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-{beta}1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29(2):254–260, 2008.

    Google Scholar 

  61. Suh, Y. A., R. S. Arnold, B. Lassegue, J. Shi, X. Xu, D. Sorescu, A. B. Chung, K. K. Griendling, and J. D. Lambeth. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748):79–82, 1999.

    Article  CAS  PubMed  Google Scholar 

  62. Torres, N. V., and E. O. Voit. Pathway Analysis and Optimization in Metabolic Engineering. Cambridge, UK: Cambridge University Press, 2002.

    Book  Google Scholar 

  63. Touyz, R. M., and E. L. Schiffrin. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J. Hypertens. 19(7):1245–1254, 2001.

    Article  CAS  PubMed  Google Scholar 

  64. Touyz, R. M., and E. L. Schiffrin. Reactive oxygen species in vascular biology: implications in hypertension. Histochem. Cell Biol. 122(4):339–352, 2004.

    Article  CAS  PubMed  Google Scholar 

  65. Vilela, M., I. C. Chou, S. Vinga, A. T. Vasconcelos, E. O. Voit, and J. S. Almeida. Parameter optimization in S-system models. BMC Syst. Biol. 2:35, 2008.

    Article  PubMed  CAS  Google Scholar 

  66. Voit, E. O. (ed.). Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity. New York: Van Nostrand Reinhold, 1991.

    Google Scholar 

  67. Voit, E. O. Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists. Cambridge, UK: Cambridge University Press, p. 531, 2000.

    Google Scholar 

  68. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53(4):502–514, 1983.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported in part by grants from the University Systems of Georgia and the Georgia Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard O. Voit.

Appendix A

Appendix A

Parameter Estimation

Due to the paucity of available time-series and quantitative data, the rate constant and kinetic order parameter values (γ i and g i ) were estimated in an ad hoc fashion as described in “Methods” section (“Parameter Estimation” section). All constraints (both for kinetic orders and rate constants) derived from equations with two terms (see Eq. 3) are presented in Table A1.

TABLE A1 Parameter constraint equations

Given these constraints and assigning a default value (such as 0.5 for substrate dependency or activation and −0.5 for inhibition) to one of the two relevant kinetic orders yields the value for the other one. This procedure requires knowledge of the ratio \( M_{{iS_{\text{O}} }} \) or \( M_{{iS_{\text{L}} }} . \) Either one of the ratios of experimental measurements to the control can be used for the computation. When both ratios are experimentally available, the ratio measured under OSS condition was used. The available ratios that were recalculated from experimental measurements are listed in Table A2.

TABLE A2 Experimental ratios of steady-state values under OSS and LSS in relation to static control

Once the kinetic orders are set, the rate constants are secondarily deduced with the constraint equations in a similar fashion. While these methods determine a good portion of the needed parameter values, other parameters require default assumptions, experience, and additional efforts for fine tuning and validating, based on available biological observations. Examples are the parameters in the system equations in Eq. (3) that contain external inputs or more than two terms.

Simulation Settings

All simulations (with results displayed in Figs. 2 to 7 in the rext) use the same numerical sets of initial conditions (Table A3) and parameter values (Table A4), with the exception of parameters under investigation in a specific simulation, as described in the text and the corresponding figure legends.

TABLE A3 Numerical values of initial conditions (ICs) and independent variables
TABLE A4 Numerical values of rate constants, kinetic orders, and time delays

The signal of shear stress acting on the phosphorylation of p47 is represented by an exponentially decaying function of the form

$$ p = \left\{ {\begin{array}{*{20}c} {\rho \cdot \exp ( - \sigma \cdot (t - t_{0} )) + offset,} \hfill & {t \ge t_{0} } \hfill \\ {1,} \hfill & {t < t_{0} } \hfill \\ \end{array} } \right., $$

where ρ represents the intensity of the phosphorylation signal after shear stress is added to the system at time t = t 0. The numerical values of ρσ, and offset are listed in Table A3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Jo, H. & Voit, E.O. Systems Analysis of the Role of Bone Morphogenic Protein 4 in Endothelial Inflammation. Ann Biomed Eng 38, 291–307 (2010). https://doi.org/10.1007/s10439-009-9822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9822-y

Keywords

Navigation