Skip to main content

Vascular Cell Physiology Under Shear Flow: Role of Cell Mechanics and Mechanotransduction

  • Chapter
  • First Online:
Mechanical and Chemical Signaling in Angiogenesis

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 12))

  • 1510 Accesses

Abstract

Whether examined at the micro- or macroscale, biological phenomenona are not exempt from physical laws and principles. The vasculature is frequently utilized as a model system to better understand and analyze the consequences of biophysical forces on biochemical processes and ultimate biological phenotypes. Given the complexities of biological systems, there is an inherent need to focus in order to properly elucidate mechanisms. Mechanotransduction and cell mechanics in various stages of angiogenesis have long been examined at distinct length-scales ranging from subcellular, cellular, multi-cellular, tissue, and beyond. This chapter will highlight research over the past decades that have contributed to revealing the importance and interplay between biophysical forces (compressive and shear flow) and biological behavior (motility, regulation of smooth muscle cells, polarity). Abnormal biophysical forces, such as hypertension, contribute significantly to vascular diseases, including atherosclerosis and aneurysm formation. Understanding the relationship between biophysical forces and biological behavior is required to understand the mechanisms of vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berne, R.M., Levy, M.N.: Cardiovascular Physiology. Mosby Year Book Inc, St. Louis (1992)

    Google Scholar 

  2. Wang, Y.X.: Do measures of vescular compliance correlate with endothelial function? Curr. Diab. Rep. 7, 265–268 (2007)

    Article  Google Scholar 

  3. Ganoug W.: Review of Medical Physiology, vol. 22. The McGraw-Hill, NY (2005)

    Google Scholar 

  4. Sherwood, L.: Human Physiology. Brooks/Cole, Belmont (2004)

    Google Scholar 

  5. Nichols, W.W., Edwards, D.G.: Arterial elastance and wave reflection augmentation of systolic blood pressure: Deleterious effects and implications for therapy. J. Cardiovasc. Pharmacol. Ther. 6, 5–21 (2001)

    Google Scholar 

  6. Vlachopoulos, C., Aznaouridis, K., Stefanadis, C.: Clinical appraisal of arterial stiffness: the Argonauts in front of the Golden Fleece, Heart, 92, 1544–1550 (2006)

    Google Scholar 

  7. Michell, G.F.: Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. Physiol. Aging Vasculature 105, 1652–1660 (2008)

    Google Scholar 

  8. Chemla, D., Hebert, J.L., Coirault, C., Zamani, K., Suard, I., Colin, P., Lecarpentier, Y.: Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. AJP 274, H500–H505 (1998)

    Google Scholar 

  9. Safar M.E., Levy, B., Struijker-Boudier, H.: Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Cirulation 107, 2864–2869 (2003)

    Google Scholar 

  10. Mitchell, J.G.F., Conlin, P.R., Dunlap, M.E., Lacourcière, Y., Arnold, J.M.O., gilvie, R.I.O., Neutel, J., Izzo, J.L.: Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension 51, 105 (2008)

    Google Scholar 

  11. Nichols, W.W., O’Rourke, M.F.: McDonlald’s Blood Flow in Arteries. Oxford University Press Inc, New York (2005)

    Google Scholar 

  12. O’Rourke, M.: Arterial stiffness, systolic blood pressusre and logical treatment of hypertension. Hypertension 15, 339–347 (1990)

    Article  Google Scholar 

  13. Glasser, S.P., Arnett, D.K., McVeigh, G.E., Finkelstein, S.M., Bank, A.J., Morgan, D.J., Cohn, J.N.: Vascular compliance and cardiovascular disease. AJH 10, 1175–1189 (1997)

    Google Scholar 

  14. Greenwald, S.E.: Ageing of the conduit arteries. J. Pathol. 211, 157–172 (2007)

    Article  Google Scholar 

  15. Safar, M.E.: Peripheral pulse pressure, large arteries, and microvessels. Hypertension 44, 121–122 (2004)

    Article  Google Scholar 

  16. Safar, M., Levy, B.I., Struijkeer-Boudier, H.: Current perspectives on arterial stiffness and pulse pressure in hypertnesion and cardiovascular diseases. Circulation 107, 2864–2869 (2003)

    Google Scholar 

  17. Ku, D.N.: Blood flow in arteries. Ann. Rev. Fluid Mech. 29 (1997)

    Google Scholar 

  18. Streeter, V.L., Keitzer, W.F., Bohr, D.F.: Pulsatile pressure and flow through distensible vessels. Circ. Res. 13, 3–20 (1963)

    Google Scholar 

  19. Capell, B.C., Collins, F.S.: Human laminopathies: nuclei gone genetically awry. Nat. Rev. Genet. 7, 940–952 (2006)

    Google Scholar 

  20. Makous, N., Friedman, S., Yakovac, V., Maris, E.P.: Cardiovascular manifestations in progeria. Report of clinical and pathologic findings in a patient with severe arterisclerotic heart disease and aortic stenosis. Am. Heart J. 64, 334–346 (1962)

    Google Scholar 

  21. Baker, P.B., Baba, N., Boesel, C.P.: Cardiovascular abnormalities in progeria. Case report and review of the literature. Arch. Pathol. Lab. Med. 105, 384–386 (1981)

    Google Scholar 

  22. Zhang, Y., Dunn, M.L., Drexler, E.S., McCowan, C.N., Slifka, A.J., Ivy, D.D., Shandas, R.: A microsctructal hyperelastic model of pulmonary arteries under normo- and hypertensive conditions. Ann. Biomed. Eng. 33, 1042–1052 (2005)

    Google Scholar 

  23. Lammers, K.P., Qi, J., Hunter, K., Lanning, C., Albietz, J., Hofmeister, S., Mecham, R., Stenmark, K., Shandas, R.: Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. Am. J. Physiol. Heart Circ. Physiol. 295, 1451–1459 (2008)

    Google Scholar 

  24. Fung, Y.C.: Biomechanics Circulation. Springer, New York (1997)

    Book  Google Scholar 

  25. O’Rourke, M.F., Safar, M.E.: Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46, 200–204 (2005)

    Article  Google Scholar 

  26. Feihl, L.L., Waeber, B.: The macrocirculation and microciculation of hypertension. Current Hypertension Reports 11, 182–189 (2009)

    Google Scholar 

  27. Safer, M.E., Struijker-Boudier, H.A.: Cross-talk between macro- and microcirculation. Acta Physiol. 198, 417–430 (2010)

    Article  Google Scholar 

  28. Intengan, S.E., Schiffrin, H.D.: Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36, 312–318 (2000)

    Article  Google Scholar 

  29. Murphy, L.M.: Mayo Clinic Cardiology, 3rd edn. Mayo Clinic Scientific Press, Rochester (2007)

    Google Scholar 

  30. Stenmark, K.R., McMurtry, I.F.: Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension a time for reappraisal. Circ. Res. 97, 95–98 (2005)

    Article  Google Scholar 

  31. Aaronson, P., Robertson, T.P., Knock, G.A., Becker, S., Lewis, T.H., Snetkov, V., Ward, J.P.T.: Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J. Physiol. 270, 53–58 (2006)

    Article  Google Scholar 

  32. Sweeney, M., Yuan, J.X.J.: Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respir. Res. 1, 40–48 (2000)

    Article  Google Scholar 

  33. Morrell, A.S., Archer, S.L., Dupuis, J., Jones, P.L., MacLean, M.R., McMutry, I.F., Stenmark, K.R., Thistlethwaite, P.A., Weissmann, N., Yuan, J.X.J., Weir, E.K.: Cellular and molecuar basis of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, S20–S31 (2009)

    Google Scholar 

  34. Sanchez, O., Marcos, E., Perros, F., Fadel, E., Tu, L., Humbert, M., Dartevelle, P., Simonneau, G., Adnot, S., Eddahibi, S.: Role of endothelium-derived CC Chemokine Ligand 2 in idioplathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 176, 1041–1047 (2007)

    Google Scholar 

  35. Veyssier-Belot, C., Cacoub, P.: Role of the endothelial and smooth muscle cells in physiophathogy and treatment management of pulmonary hypertension. Cardio. Res., 44, 274–282 (1999)

    Google Scholar 

  36. Owens, G.K., Rabinovitch, P.S., Schwartz, S.M.: Smooth muscle cell hypertrophy versus hyperplasia in hypertnesion. Proc. Natl. Acad. Sci. 78, 7759–7763 (1981)

    Article  Google Scholar 

  37. Quinn, S.M.T.P., Soifer, S.J., Gutierrez, J.A.: Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L897–L903 (2002)

    Google Scholar 

  38. Lehoux, S., Tedgui, A.: Cellular mechanics and gene expression in blood vessels. J. Biomech. 36, 631–643 (2003)

    Google Scholar 

  39. Reneman, R.S., Arts, T., Hoeks, A.P.G.: Wall shear stress- an important determinant of endothelial cell function and structure- in the arterial system in vivo. J. Vasc. Res. 43, 251–269 (2006)

    Google Scholar 

  40. Albuquerque, W.C.M.L.C., Savla, U., Schnaper, H.W., Flozak, A.S.: Shear stress enhances human endothelial cell wound closure in vitro. Am. J. Physiol. Heart Circ. Physiol. 279, H293–H302 (2000)

    Google Scholar 

  41. Traub, O., Berk, B.C.: Laminar shear stress: mechanisms by which endothelial cells transduce an arthoprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 667–685 (1998)

    Article  Google Scholar 

  42. Li, M., Stenmark, K.R., Shandas, R., Tan, W.: Effects of pathological flow on pulmonary artery endothelial production of vasoactive mediators and growth factors. J. Vasc. Res. 46, 561–571 (2009)

    Google Scholar 

  43. O’Rourke, M.F., Hashimoto, J.: Mechanical factors in arterial aging: A clinical perspective. JACC 50, 1–13 (2007)

    Google Scholar 

  44. Safar, M.E., Lacolley, P.: Disturbance of maro- and microcirculations : relations with pulse pressure and cardiac organ damage. Am. J. Physiol. Heart Circ. Physiol. 293, H1–H7 (2007)

    Article  Google Scholar 

  45. Pyke, K.E., Tschakovsky, M.E.: The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. J. Physiol. 568(2), 357–369 (2005)

    Article  Google Scholar 

  46. Budhiraja, R., Tuder, R.M., Hassoun, P.M.: Endothelial dysfunction in pulmonary hypertension. Circulation 109, 159–165 (2004)

    Article  Google Scholar 

  47. Vanhoutte, P.M., Feletou, M., Taddei, S.: Endothelium-dependent contractions in hypertension. Brithish J. Pharmacol 144, 449–458 (2005)

    Google Scholar 

  48. Giaid, A., Saleh, D.: Reduced expression of endothelial ntric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 333, 214–221 (1995)

    Article  Google Scholar 

  49. Abranham, W., Raynolds, M.V., Gottschall, B., Badesch, D.B., Wynne, K.M., Groves, B.M., Lowes, B.D., Bristow, M.R., Perryman, B., Voelkel, N.F.: Importance of angiotensin-converting enzyme in pulmonary hypertension. Cardiology 86, 9–15 (1995)

    Article  Google Scholar 

  50. Du, L., Sullivan, D.C.: Signaling molecules in nonfamililial pulmonary hypertension. N. Engl. J. Med. 348, 500–509 (2003)

    Article  Google Scholar 

  51. Humbert, M., Morrell, N.W., Archer, S.L., Stenmark, K.R., MacLean, M.R., Lang, I.M., Christman, B.W., Weir, E.K., Eickelberg, O., Voelkel, N.F., Rabinovitch, M.: Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43, S13–S24 (2004)

    Article  Google Scholar 

  52. Barakat, A.I.: Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review). Int. J. Mol. Med. 4, 323–332 (1999)

    Google Scholar 

  53. Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997)

    Article  Google Scholar 

  54. Helmke, B.P.: Molecular control of cytoskeletal mechanics by hemodynamic forces. Physiology (Bethesda) 20, 43–53 (2005)

    Article  Google Scholar 

  55. Helmke, B.P., Davies, P.F.: The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30, 284–296 (2002)

    Article  Google Scholar 

  56. Tzima, E., Del Pozo, M.A., Kiosses, W.B., Mohamed, S.A., Li, S., Chien, S., Schwartz, M.A.: Activation of Racl by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21, 6791–6800 (2002)

    Article  Google Scholar 

  57. Vojciak-Stothard, B., Ridley, A.J.: Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J. Cell Biol. 161, 429–439 (2003)

    Article  Google Scholar 

  58. del Alamo, J.C., Norwich, G.N., Li, Y.S., Lasheras, J.C., Chien, S.: Anisotropic rhelogy and directional mechanotransduction in vascular endothelial cells. Proc. Nat. Aca. 105, 15411–15416 (2008)

    Article  Google Scholar 

  59. Lee, J.S., Panorchan, P., Hale, C.M., Khatau, S.B., Kole, T.P., Tseng, Y., Wirtz, D.: Ballistic intracellular nanoreheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell Sci. 119, 1760–1768 (2006)

    Article  Google Scholar 

  60. Davies, P.F., Robotewskyj, A., Griem, M.L.: Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93, 2031–2038 (1994)

    Article  Google Scholar 

  61. Uttayarat, P., Toworfe, G.K., Dietrich, F., Lelkes, P.I., Composto, R.J.: Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J. Biomed. Mater. Res. A 75, 668–680 (2005)

    Article  Google Scholar 

  62. Lehoux, S., Castier, Y., Tedgui, A.: Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259, 381–392 (2006)

    Article  Google Scholar 

  63. Langille, B.L.: Morphologic responses of endothelium to shear stress: reorganization of the adherens junction. Microcirculation 8, 195–206 (2001)

    Google Scholar 

  64. Miao, H., Hu, Y.L., Shiu, Y.T., Yuan, S., Zhao, Y., Kaunas, R., Wang, Y., Jin, G., Usami, S., Chien, S.: Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations. J. Vasc. Res. 42, 77–89 (2005)

    Article  Google Scholar 

  65. Gray, D.S., Liu, W.F., Shen, C.J., Bhadriraju, K., Nelson, C.M., Chen, C.S.: Engineering amount of cell–cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp. Cell Res. 314, 2846–2854 (2008)

    Article  Google Scholar 

  66. Vartanian, K.B., Kirkpatrick, S.J., Hanson, S.R., Hinds, M.T.: Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem. Biophys. Res. Commun. 371, 787–792 (2008)

    Article  Google Scholar 

  67. Alenghat, F.J., Ingber, D.E.: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE 2002, PE6 (2002)

    Google Scholar 

  68. Hale, C.M., Shrestha, A.L., Khatau, S.B., Stewart-Hutchinson P.J., Hernandes, L., Stewart C.L., Hodzic D., Wirtz, D.: Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95(11), 5462–5475 (2008)

    Google Scholar 

  69. Hennekam, R.C.: Hutchinson-Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. 23, 2603–2624 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association 09BGIA2260384 (M.T.H), and the National Institute of Health grants 1R01HL103728 (M.T.H.), R01HL101972 (O.J.T.M.) and 1U54CA143906 (O.J.T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devon Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, D., Tan, W., Lee, J.S.H., McCarty, O.J.T., Hinds, M.T. (2013). Vascular Cell Physiology Under Shear Flow: Role of Cell Mechanics and Mechanotransduction. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics