Skip to main content

Advertisement

Log in

Normal and Hydrocephalic Brain Dynamics: The Role of Reduced Cerebrospinal Fluid Reabsorption in Ventricular Enlargement

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

CINE phase-contrast MRI (CINE-MRI) was used to measure cerebrospinal fluid (CSF) velocities and flow rates in the brain of six normal subjects and five patients with communicating hydrocephalus. Mathematical brain models were created using the MRI images of normal subjects and hydrocephalic patients. In our model, the effect of pulsatile vascular expansion is responsible for pulsatile CSF flow between the cranial and the spinal subarachnoidal spaces. Simulation results include intracranial pressure gradients, solid stresses and strains, and fluid velocities throughout the cranio-spinal system. Computed velocities agree closely with our in vivo CINE-MRI CSF flow measurements. In addition to normal intracranial dynamics, our model captures the transition to acute communicating hydrocephalus. By increasing the value for reabsorption resistance in the subarachnoid villi, our model predicts that the poroelastic parenchyma matrix will be drained and the ventricles enlarge despite small transmantle pressure gradients during the transitional phase. The poroelastic simulation thus provides a plausible explanation on how reabsorption changes could be responsible for enlargement of the ventricles without large transmantle pressure gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12

Similar content being viewed by others

References

  1. Bertram, C.D., A.R., Brodbelt, and M.A. Stoodley. The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J. Biomech. Eng. 127:1099-1109, 2005. doi:10.1115/1.2073607

    Article  PubMed  CAS  Google Scholar 

  2. Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 12:155-164, 1941. doi:10.1063/1.1712886

    Article  Google Scholar 

  3. Biot, M.A. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26:182-185, 1955. doi:10.1063/1.1721956

    Article  CAS  Google Scholar 

  4. Czosnyka, M., Z. Czosnyka, S. Momjian, and J. Pickard. Cerebrospinal fluid dynamics. Physiol. Meas. 25:R51-R76, 2004. doi:10.1088/0967-3334/25/5/R01

    Article  PubMed  Google Scholar 

  5. Dandy, W. Experimental hydrocephalus. Ann. Surg. 70:129-142, 1919

    Article  PubMed  CAS  Google Scholar 

  6. Fin, L., and R. Grebe. Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comput. Methods Biomech. Biomed. Eng. 6:163-170, 2003. doi:10.1080/1025584031000097933

    Article  Google Scholar 

  7. Gonzalez-Darder, J.M., and J.L. Barcia-Salorio. Pulse amplitude and volume-pressure relationships in experimental hydrocephalus. Acta Neurochir (Wien). 97:166-170, 1989. doi:10.1007/BF01772830

    Article  CAS  Google Scholar 

  8. Greitz, D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg. Rev. 27:145-165, 2004

    PubMed  Google Scholar 

  9. Greitz, D. Unraveling the riddle of syringomyelia. Neurosurg. Rev. 29:251-264, 2006. doi:10.1007/s10143-006-0029-5

    Article  PubMed  Google Scholar 

  10. Greitz, D., J. Hannerz, T. Rahn, H. Bolander, and A. Ericsson. MR imaging of cerebrospinal fluid dynamics in health and disease. Acta Radiologica. 35:204-211, 1994

    PubMed  CAS  Google Scholar 

  11. Jacobson, E., D. Fletcher, M. Morgan, and I. Johnston. Computer modeling of the cerebrospinal fluid flow dynamics of aqueduct stenosis. Med. Biol. Eng. Comput. 37:59-63, 1999. doi:10.1007/BF02513267

    Article  PubMed  CAS  Google Scholar 

  12. Jacobson, E., D. Fletcher, M. Morgan, and I. Johnston. Fluid dynamics of the cerebral aqueduct. Pediatr. Neurosurg. 24:229-236, 1996. doi:10.1159/000121044

    Article  PubMed  CAS  Google Scholar 

  13. Johanson, C.E., J.A. Duncan III, P.M. Klinge, T. Brinker, E.G. Stopa, and G.D. Silverberg. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 5:10, 2008. doi:10.1186/1743-8454-5-10.

    Article  PubMed  CAS  Google Scholar 

  14. Kaczmarek, M., R. Subramaniam, and S. Neff. The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bull. Math. Biol. 59:295-323, 1997. doi:10.1007/BF02462005

    Article  PubMed  CAS  Google Scholar 

  15. Linninger, A.A., C. Tsakiris, D.C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger, and R. Penn. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans. Biomed. Eng. 52:557-565, 2005. doi:10.1109/TBME.2005.844021

    Article  PubMed  Google Scholar 

  16. Linninger, A.A., M. Xenos, D.C. Zhu, M.B. Somayaji, and R. Penn. Cerebrospinal fluid flow in the normal and hydrocephalic brain. IEEE Trans. Biomed. Eng. 54:291-302, 2007. doi:10.1109/TBME.2006.886853

    Article  PubMed  Google Scholar 

  17. Linninger, A. A., M. Xenos, B. Sweetman, S. Ponkshe, X. Guo, and R. Penn. A mathematical model of blood, cerebrospinal fluid and brain dynamics. J. Math. Biol., 2009. doi:10.1007/s00285-009-0250-2.

  18. Peña, A., M. Bolton, H. Whitehouse, and J. Pickard. Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery. 45:107, 1999. doi:10.1097/00006123-199907000-00026

    Article  PubMed  Google Scholar 

  19. Penn, R., and J. Bacus. The brain as a sponge: a computed tomographic look at Hakim’s hypothesis. Neurosurgery. 14:670-675, 1984. doi:10.1097/00006123-198406000-00004

    Article  PubMed  CAS  Google Scholar 

  20. Penn, R., M.C. Lee, A.A. Linninger, K. Miesel, S. Ning Lu, and L. Stylos. Pressure gradients in the brain in an experimental model of hydrocephalus. J. Neurosurg. 102:1069-1075, 2005

    Article  PubMed  Google Scholar 

  21. Peters, G.P., and D.W. Smith. Solute transport through a deforming porous medium. Int. J. Numer. Anal. Methods Geomech. 26:683-717, 2002. doi:10.1002/nag.219

    Article  CAS  Google Scholar 

  22. Pettorossi, V.E., C. Di Rocco, R. Mancinelli, M. Caldarelli, and F. Velardi. Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pulse pressure: rationale and method. Exp. Neurol. 59:30-39, 1978. doi:10.1016/0014-4886(78)90198-X

    Article  PubMed  CAS  Google Scholar 

  23. Smillie, A., I. Sobey, and Z. Molnar. A hydroelastic model of hydrocephalus. J. Fluid Mech. 539:417-443, 2005. doi:10.1017/S0022112005005707

    Article  Google Scholar 

  24. Stephensen, H., M. Tisell, and C. Wikkelso. There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery. 50:763-771, 2002. doi:10.1097/00006123-200204000-00016

    Article  PubMed  Google Scholar 

  25. Taylor, Z., and K. Miller. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37:1263-1269, 2004. doi:10.1016/j.jbiomech.2003.11.027

    Article  PubMed  Google Scholar 

  26. Troupp, H. Intracranial pressure in hydrocephalus after subarachnoid hemorrhage. Zentralbl Neurochir. 36:11-17, 1975

    PubMed  CAS  Google Scholar 

  27. Ulug, A., T. Truong, C. Filippi, T. Chun, J. Lee, C. Yang, M. Souweidane, and R. Zimmerman. Diffusion imaging in obstructive hydrocephalus. Am. J. Neuroradiol. 24:1171-1176, 2003

    PubMed  Google Scholar 

  28. Zhu, D., M. Xenos, A.A. Linninger, and R. Penn. Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains. J. Magn. Reson. Imaging. 24:756-770, 2006. doi:10.1002/jmri.20679

    Article  PubMed  Google Scholar 

  29. Zimmerman, R., C. Fleming, B. Lee, L. Saint-Louis, and M. Deck. Periventricular hyperintensity as seen by magnetic resonance: prevalence and significance. Am. J. Roentgenol. 146:443-450, 1986

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to gratefully acknowledge NIH for their partial financial support of this project, NIH-5R21EB004956, as well as a grant from the Stars Kids Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Linninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linninger, A.A., Sweetman, B. & Penn, R. Normal and Hydrocephalic Brain Dynamics: The Role of Reduced Cerebrospinal Fluid Reabsorption in Ventricular Enlargement. Ann Biomed Eng 37, 1434–1447 (2009). https://doi.org/10.1007/s10439-009-9691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9691-4

Keywords

Navigation