Skip to main content
Log in

A Mathematical Model to Predict CO2 Removal in Hollow Fiber Membrane Oxygenators

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model has been developed to predict CO2 removal in hollow fiber membrane oxygenators. The model is analogous to one developed previously for predicting O2 transfer. A mass transfer correlation was determined in water for O2 and CO2 exchange and collapsed onto one universal curve. The correlation was used to predict CO2 removal in blood by incorporating a ‘facilitated diffusivity’ to account for the transport of CO2 present as bicarbonate. The diffusion of bicarbonate greatly increased the ability of the oxygenator to remove CO2 in blood compared to water. A fiber bundle module was fabricated to test the model predictions. The fiber bundle had a length of 13 cm and a bundle thickness of 0.2 cm. The module was tested in bovine blood at flowrates of 0.75, 1.5, and 2.2 L/min and CO2 removal rate predictions were within 9% of experimental measurements at all flowrates. The O2 transfer rate predictions were within 10% of experimental measurements. A second module was manufactured with a bundle of length 4 cm and thickness of 1 cm. The CO2 removal predictions were within the standard deviation of the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Boschetti, F., et al., Blood flow pulsatility effects upon oxygen transfer in artificial lungs. Asaio J. 2003, 49(6): 678–686

    Article  PubMed  Google Scholar 

  2. Brunston, R. L., Jr., et al. Total arteriovenous CO2 removal: simplifying extracorporeal support for respiratory failure. Ann. Thorac. Surg. 64(6):1599–1604, 1997; discussion 1604-5.

    Google Scholar 

  3. Utley, J. R., et al. Cardiovascular implants and artificial organs—Blood-gas exchangers oxygenators. In: AAMI Standards and Recommended Practices: Biomedical Equipment, Part 1: General Safety and Design; Equipment for Therapy and Surgery. American National Standards Institute, Inc., 1996, pp. 633–648.

  4. Dierickx, P. W., D. De Wachter, and P. R. Verdonck, Blood flow around hollow fibers. Int. J. Artif. Organs 2000, 23(9): 610–617

    PubMed  CAS  Google Scholar 

  5. Federspiel, W. J., T. J. Hewitt, and B. G. Hattler, Experimental evaluation of a model for oxygen exchange in a pulsating intravascular artificial lung. Ann. Biomed. Eng. 2000. 28(2): 160–167

    Article  PubMed  CAS  Google Scholar 

  6. Federspiel, W., et al., Temporary support of the lungs: the artificial lung, in The Transplantation and Replacement of Thoracic Organs, D.K.C. Cooper, L.W. Miller, and G.A. Patterson, Editors. 1996, Kluwer Academic Publishers: Boston. pp 717–728

    Chapter  Google Scholar 

  7. Forster, R. E., Diffusion of gases in the lungs. Physiologist 1966, 9(2): 110–122

    PubMed  CAS  Google Scholar 

  8. Forster, R. E. and E. D. Crandall, Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J. Appl. Physiol. 1975, 38(4): 710–718

    PubMed  CAS  Google Scholar 

  9. Gage, K. L., et al., Predicting membrane oxygenator pressure drop using computational fluid dynamics. Artif. Organs 2002, 26(7): 600–607

    Article  PubMed  Google Scholar 

  10. Gartner, M. J., et al., Modeling flow effects on thrombotic deposition in a membrane oxygenator. Artif. Organs, 2000. 24(1): 29–36

    Article  PubMed  CAS  Google Scholar 

  11. Golob, J. F., et al., Acute in vivo testing of an intravascular respiratory support catheter. Asaio J. 2001, 47(5): 432–437

    Article  PubMed  CAS  Google Scholar 

  12. Guyton, A. C. Basic Human Physiology: Normal Function and Mechanisms of Disease, 2nd edn. Philadelphia: Saunders, xi, 931 pp, 1977.

  13. Hattler, B. G., et al., A respiratory gas exchange catheter: in vitro and in vivo tests in large animals. J. Thorac. Cardiovasc. Surg. 2002, 124(3): 520–530

    Article  PubMed  Google Scholar 

  14. Hewitt, T. J., B. G. Hattler, and W. J. Federspiel, A mathematical model of gas exchange in an intravenous membrane oxygenator. Ann. Biomed. Eng. 1998, 26(1): 166–178

    Article  PubMed  CAS  Google Scholar 

  15. Kaar, J. L., et al., Towards improved artificial lungs through biocatalysis. Biomaterials 2007, 28(20): 3131–3139

    Article  PubMed  CAS  Google Scholar 

  16. Kays, W. M. and M. E. Crawford. Convective Heat and Mass Transfer, 3rd edn. McGraw-Hill series in mechanical engineering. New York: McGraw-Hill, xxxii, 601 pp, 1993.

  17. Loeppky, J. A., U. C. Luft, and E. R. Fletcher, Quantitative description of whole blood CO2 dissociation curve and Haldane effect. Respir. Physiol. 1983, 51(2): 167–181

    Article  PubMed  CAS  Google Scholar 

  18. Mancini, P., 2nd, et al. CO2 removal for ventilatory support: a comparison of dialysis with and without carbonic anhydrase to a hollow fiber lung. ASAIO Trans. 36(3):M675–M678, 1990.

    Google Scholar 

  19. MatLab, Version 6.2. The MathWorks, 2003.

  20. Mockros, L. F. and R. Leonard, Compact cross-flow tubular oxygenators. Trans. Am. Soc. Artif. Intern. Organs 1985, 31: 628–633

    PubMed  CAS  Google Scholar 

  21. Salley, S. O., et al., Immobilized carbonic anhydrase in a membrane lung for enhanced CO2 removal. ASAIO Trans. 1990, 36(3): M486–M490

    PubMed  CAS  Google Scholar 

  22. Spaeth, E. E., Blood oxygenation in extracorporeal devices: theoretical considerations. CRC Crit. Rev. Bioeng. 1973, 1(4): 383–417

    PubMed  CAS  Google Scholar 

  23. Svitek, R. G., B. J. Frankowski, and W. J. Federspiel, Evaluation of a pumping assist lung that uses a rotating fiber bundle. Asaio J. 2005, 51(6): 773–780

    Article  PubMed  Google Scholar 

  24. Vaslef, S. and R. Anderson. The Artificial Lung, 1 edn. Gas Exchange in the Venous System: Support for the Failing Lung. Georgetown: Landes Bioscience, 2002.

  25. Vaslef, S. N., et al., Use of a mathematical model to predict oxygen transfer rates in hollow fiber membrane oxygenators. Asaio J. 1994, 40(4): 990–996

    Article  PubMed  CAS  Google Scholar 

  26. Vaslef, S. N., et al., Computer-assisted design of an implantable, intrathoracic artificial lung. Artif. Organs 1994, 18(11): 813–817

    PubMed  CAS  Google Scholar 

  27. Vaslef, S. N., et al., Design and evaluation of a new, low pressure loss, implantable artificial lung. Asaio J. 1994. 40(3): M522–M526

    Article  PubMed  CAS  Google Scholar 

  28. Wickramasinghe, S. R., M. J. Semmens, and E. L. Cussler, Mass transfer in various hollow fiber geometries. J. Memb. Sci. 1992, 69(3): 235

    Article  CAS  Google Scholar 

  29. Wickramasinghe, S. R., et al., Designing blood oxygenators. Ann. N. Y. Acad. Sci. 2003, 984: 502–514

    PubMed  CAS  Google Scholar 

  30. Zwischenberger, J. B., et al., Percutaneous extracorporeal arteriovenous CO2 removal for severe respiratory failure. Ann. Thorac. Surg. 1999, 68(1): 181–187

    Article  PubMed  CAS  Google Scholar 

  31. Zwischenberger, J. B., et al., Percutaneous extracorporeal arteriovenous carbon dioxide removal improves survival in respiratory distress syndrome: a prospective randomized outcomes study in adult sheep. J. Thorac. Cardiovasc. Surg. 2001, 121(3):542–551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Commonwealth of Pennsylvania, the National Tissue Engineering Consortium (NTEC), U.S. Army Medical Research and Material Command Grant Number DAMD17-02-0717, and also by National Institutes of Health (NIH), the National Heart, Lung, and Blood Institute (NHLBI) Grant Number RO1 HL70051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Federspiel.

Appendix

Appendix

CO2 Transport Equations

The following is a derivation of the convection–diffusion equations for CO2 in a blood continuum. The flowrate of dissolved CO2 and bound CO2 (bicarbonate and CO2 bound to hemoglobin) due to convection through a differential element, dA can be expressed as:

$$ C_{{\rm CO}_2}^d V_{\rm b} {\cdot}ndA+C_{{\rm CO}_2}^b V_{\rm b} {\cdot}ndA $$
(A.1)

The flowrate of dissolved (free) CO2 and CO2 stored as HCO3 due to diffusion through dA is:

$$ -D_{{\rm CO}_2} \nabla C_{{\rm CO}_2}^d {\cdot}ndA-D_{{\rm HCO}_3} \nabla C_{{\rm HCO}_3}{\cdot}ndA $$
(A.2)

CO2 bound to hemoglobin will have low diffusion capacity due to the large size of the hemoglobin molecule. The total flowrate of CO2 through a differential volume element dV as dV → 0 is:

$$ V_{\rm b} {\cdot}\left({\nabla C_{{\rm CO}_2}^d +\nabla C_{{\rm CO}_2}^b } \right)=D_{{\rm CO}_2} \nabla^{2}C_{{\rm CO}_2}^d +D_{{\rm HCO}_3} \nabla ^{2}C_{{\rm HCO}_3} $$
(A.3)

The dissolved component of CO2 will obey Henry’s law and can be expressed in terms of partial pressure and solubility\((\alpha_{{\rm CO}_2})\):

$$ C_{{\rm CO}_2}^d =\alpha _{{\rm CO}_2} P_{{\rm CO}_2} $$
(A.4)

Using the chain rule and rearranging gives the transport equation for CO2 in blood:

$$ V_{\rm b} {\cdot}\left({1+\frac{1}{\alpha _{{\rm CO}_2} }\frac{\partial C_{{\rm CO}_2}^b }{\partial P_{{\rm CO}_2} }} \right)\nabla P_{{\rm CO}_2} =\nabla {\cdot}\left({D_{{\rm CO}_2} +\frac{D_{{\rm HCO}_3} }{\alpha _{{\rm CO}_2} }\frac{\partial C_{{\rm HCO}_3}}{\partial P_{{\rm CO}_2} }} \right)\nabla P_{{\rm CO}_2} $$
(A.5)

The right hand side of Eq. (A.5) is the diffusion of dissolved CO2 and HCO3 and the left hand side is the convection of CO2 in all forms. The term in parenthesis on the right hand side is a facilitated diffusion coefficient:

$$ D_{\rm f}=D_{{\rm CO}_2} +\frac{D_{{\rm HCO}_3} }{\alpha _{{\rm CO}_2} }\frac{\partial C_{{\rm HCO}_3} }{\partial P_{{\rm CO}_2}} $$
(A.6)

The convective-diffusion equation for CO2 can be obtained by dividing the right hand side of Eq. (A.5) by \(1+(1/\alpha)(\partial C_{{\rm CO}_2}^b/\partial P_{{\rm CO}_2})\) assuming a constant value for \(\partial C_{{\rm CO}_2}^b/\partial P_{{\rm CO}_2}\) (approximated as \(\overline {\lambda _{{\rm CO}_2} } \) in the text):

$$ V_{\rm b} {\cdot}\nabla P_{{\rm CO}_2} =D_{eff\_{\rm CO}_2} \nabla ^{2}P_{{\rm CO}_2} $$
(A.7)

The convective-diffusion equation leads to the definition of the effective diffusivity used in the Sc number:

$$ D_{{\rm eff}\_{\rm CO}_2} =\frac{D_{{\rm CO}_2} +\frac{D_{{\rm HCO}_3} }{\alpha _{{\rm CO}_2} }\frac{\partial C_{{\rm HCO}_3} }{\partial P_{{\rm CO}_2} }}{1+\frac{1}{\alpha_{{\rm CO}_2} }\frac{\partial C_{{\rm CO}_2}^b }{\partial P_{{\rm CO}_2}}} $$
(A.8)

Boundary Conditions

The solution to the convective diffusion equation requires a boundary condition at the surface of the fibers. The flux across the fiber wall is due to the diffusion of dissolved CO2 and bicarbonate ions. As the dissolved CO2 is removed by the fibers, the bicarbonate is rapidly converted to CO2 through the action of the enzyme carbonic anhydrase. At the fiber surface, the diffusional flux is:

$$ N_{{\rm CO}_2}=-\alpha _{{\rm CO}_2} D_{\rm f}\nabla P_{{\rm CO}_2}=k_{{\rm CO}_2} (P_{{\rm CO}_2}-P_{{\rm G}\_{\rm CO}_2}) $$
(A.9)

which results in the definition of the Sh number.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svitek, R.G., Federspiel, W.J. A Mathematical Model to Predict CO2 Removal in Hollow Fiber Membrane Oxygenators. Ann Biomed Eng 36, 992–1003 (2008). https://doi.org/10.1007/s10439-008-9482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9482-3

Keywords

Navigation