Skip to main content

A Novel First-Order Autoregressive Moving Average Model to Analyze Discrete-Time Series Irregularly Observed

  • Conference paper
  • First Online:
Theory and Applications of Time Series Analysis and Forecasting (ITISE 2021)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

Abstract

A novel first-order autoregressive moving average model for analyzing discrete-time series observed at irregularly spaced times is introduced. Under Gaussianity, it is established that the model is strictly stationary and ergodic. In the general case, it is shown that the model is weakly stationary. The lowest dimension of the state-space representation is given along with the one-step linear predictors and their mean squared errors. The maximum likelihood estimation procedure is discussed, and their finite-sample behavior is assessed through Monte Carlo experiments. These experiments show that the bias, the root mean square error, and the coefficient of variation are smaller when the length of the series increases. Further, the method provides good estimations for the standard errors, even with relatively small sample sizes. Also, the irregularly spaced times seem to increase the estimation variability. The application of the proposed model is made through two real-life examples. The first is concerned with medical data, whereas the second describes an astronomical data set analysis.

This article is based on Chapter 3 of the first author’s doctoral thesis [28]. Supported by CONICYT PFCHA/2015-21151457 and the ANID Millennium Science Initiative ICN12_009, awarded to the Millennium Institute of Astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adorf, H.M.: Interpolation of irregularly sampled data series–a survey. In: Shaw, R.A., Payne, H.E., Hayes, J.J.E. (eds.) Astronomical Data Analysis Software and Systems IV, ASP Conference Series, vol. 77, pp. 460–463. Astronomical Society of the Pacific (1995)

    Google Scholar 

  2. Babu, G.J., Mahabal, A.: Skysurveys, light curves and statistical challenges. Int. Stat. Rev. 84(3), 506–527 (2016). https://doi.org/10.1111/insr.12118

    Article  MathSciNet  Google Scholar 

  3. Belcher, J., Hampton, J.S., Tunnicliffe Wilson, G.: Parametrization of continuous time autoregressive models for irregularly sampled time series data. J. R. Stat. Soc. Ser. B (Methodological) 56(1), 141–155 (1994)

    Google Scholar 

  4. Bellm, E.C.: The zwicky transient facility: System overview, performance, and first results. Publ. Astron. Soc. Pacific 131(995), 018002 (2018). https://doi.org/10.1088/1538-3873/aaecbe

    Article  Google Scholar 

  5. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: forecasting and control, 5th edn. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ (2016)

    Google Scholar 

  6. Brockwell, P.J., Davis, R.A.: Time series: theory and methods, 2nd edn. Springer Series in Statistics. Springer Science +Business Media, LLC, New York, USA (1991)

    Google Scholar 

  7. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corduas, M., Piccolo, D.: Time series clustering and classification by the autoregressive metric. Comput. Stat. Data Anal. 52(4), 1860–1872 (2008). https://doi.org/10.1016/j.csda.2007.06.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunsmuir, W.: A central limit theorem for estimation in gaussian stationary time series observed at unequally spaced times. Stochast. Process. Appl. 14, 279–295 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edelmann, D., Fokianos, K., Pitsillou, M.: An updated literature review of distance correlation and its applications to time series. Int. Stat. Rev. 87(2), 237–262 (2019). https://doi.org/10.1111/insr.12294

    Article  MathSciNet  Google Scholar 

  11. Elorrieta, F.: Classification and modeling of time series of astronomical data. Ph.D., Pontificia Universidad Católica de Chile, Santiago de Chile (2018). https://repositorio.uc.cl/handle/11534/22162

    Google Scholar 

  12. Elorrieta, F., Eyheramendy, S., Palma, W.: Discrete-time autoregressive model for unequally spaced time-series observations. A&A 627, A120 (2019). https://doi.org/10.1051/0004-6361/201935560

    Article  Google Scholar 

  13. Eyheramendy, S., Elorrieta, F., Palma, W.: An irregular discrete time series model to identify residuals with autocorrelation in astronomical light curves. Month. Not. R. Astron. Soc. 481(4), 4311–4322 (Dec 2018)

    Article  Google Scholar 

  14. Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., Estévez, P.A., Sánchez-Sáez, P., Arredondo, J., Bauer, F.E., Carrasco-Davis, R., Catelan, M., Elorrieta, F., Eyheramendy, S., Huijse, P., Pignata, G., Reyes, E., Reyes, I., Rodríguez-Mancini, D., Ruz-Mieres, D., Valenzuela, C., Álvarez-Maldonado, I., Astorga, N., Borissova, J., Clocchiatti, A., Cicco, D.D., Donoso-Oliva, C., Hernández-García, L., Graham, M.J., Jordán, A., Kurtev, R., Mahabal, A., Maureira, J.C., Muñoz-Arancibia, A., Molina-Ferreiro, R., Moya, A., Palma, W., Pérez-Carrasco, M., Protopapas, P., Romero, M., Sabatini-Gacitua, L., Sánchez, A., Martín, J.S., Sepúlveda-Cobo, C., Vera, E., Vergara, J.R.: The automatic learning for the rapid classification of events (ALeRCE) alert broker. Astron. J. 161(5), 242 (Apr 2021). https://doi.org/10.3847/1538-3881/abe9bc

  15. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton, NJ (1994)

    Book  MATH  Google Scholar 

  16. Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press (1989)

    Google Scholar 

  17. Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Statistics in Practice, Wiley (2008)

    MATH  Google Scholar 

  18. Jones, R.H.: Likelihood fitting of ARMA models to time series with missing observations. Technometrics 22(3), 389–395 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, R.H.: Time series analysis with unequally spaced data. In: Hannan, E.J., Krishnaiah, P.R., Rao, M.M. (eds.) Time Series in the Time Domain, Handbook of Statistics, vol. 5, chap. 5, pp. 157–177. Elsevier Science Publishers B.V., Amsterdam, North-Holland (1985)

    Chapter  Google Scholar 

  20. Kiliç, E.: Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions. Appl. Math. Comput. 197, 345–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, J., Stoffer, D.S.: Fitting stochastic volatility models in the presence of irregular sampling via particle methods and the em algorithm. J. Time Ser. Anal. 29(5), 811–833 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koehler, E., Brown, E., Haneuse, S.J.: On the assessment of Monte Carlo error in simulation-based statistical analyses. Am. Stat. 63(2), 155–162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, J.I.: Testing cointegrating relationships using irregular and non-contemporaneous series with an application to paleoclimate data. J. Time Ser. Anal. 40(6), 936–950 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moore, M.I., Visser, A.W., Shirtcliffe, T.: Experiences with the brillinger spectral estimator applied to simulated irregularly observed processes. J. Time Ser. Anal. 8(4), 433–442 (1987)

    Article  MathSciNet  Google Scholar 

  25. Muñoz, A., Carey, V., Schouten, J.P., Segal, M., Rosner, B.: A parameteric family of correlation structures for the analysis of longitudinal data. Biometrics 48(3), 733–742 (1992)

    Article  Google Scholar 

  26. Mudelsee, M.: Climate time series analysis: classical statistical and bootstrap methods, Atmospheric and Oceanographic Sciences Library, vol. 51, 2nd edn. Springer International Publishing (2014)

    Google Scholar 

  27. Nair, V.N.: Q-Q plots with confidence bands for comparing several populations. Scand. J. Stat. 9(4), 193–200 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Ojeda, C.: Analysis of irregularly spaced time series. Ph.D., Pontificia Universidad Católica de Chile, Santiago de Chile (2019). https://repositorio.uc.cl/handle/11534/48405

    Google Scholar 

  29. Ojeda, C., Palma, W., Eyheramendy, S., Elorrieta, F.: An irregularly spaced first-order moving average model. math.ST (2021). https://arxiv.org/abs/2105.06395

  30. Parzen, E.: On spectral analysis with missing observations and amplitude modulation. Sankhyā Indian J. Stat. Ser. A (1961–2002) 25(4), 383–392 (1963)

    Google Scholar 

  31. Parzen, E. (ed.): Time Series Analysis of Irregularly Observed Data. Lecture Notes in Statistics, vol. 25. Springer (1984)

    Google Scholar 

  32. Reinsel, G.C., Wincek, M.A.: Asymptotic distribution of parameter estimators for nonconsecutively observed time series. Biometrika 74(1), 115–124 (Mar 1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Robinson, P.M.: Estimation of a time series model from unequally spaced data. Stochast. Process. Appl. 6, 9–24 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stout, W.F.: Almost Sure Convergence. Probability and Mathematical Statistics, No. 24. Academic Press (1974)

    Google Scholar 

  35. Thornton, M.A., Chambers, M.J.: Continuous-time autoregressive moving average processes in discrete time: representation and embeddability. J. Time Ser. Anal. 34(5), 552–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Z.: cts: An R package for continuous time autoregressive models via Kalman filter. J. Stat. Softw. 53(5), 1–19 (2013)

    Google Scholar 

  37. Zhang, S.: Nonparametric bayesian inference for the spectral density based on irregularly spaced data. Comput. Stat. Data Anal. 151, 107019 (2020). https://doi.org/10.1016/j.csda.2020.107019

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Ojeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ojeda, C., Palma, W., Eyheramendy, S., Elorrieta, F. (2023). A Novel First-Order Autoregressive Moving Average Model to Analyze Discrete-Time Series Irregularly Observed. In: Valenzuela, O., Rojas, F., Herrera, L.J., Pomares, H., Rojas, I. (eds) Theory and Applications of Time Series Analysis and Forecasting. ITISE 2021. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-14197-3_7

Download citation

Publish with us

Policies and ethics