Skip to main content
Log in

X-Ray Image Review of the Bone Remodeling Around an Osseointegrated Trans-femoral Implant and a Finite Element Simulation Case Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The insertion of an implant into a bone leads to stress/strain redistribution, hence bone remodeling occurs adjacent to the implant. The study of the bone remodeling around the osseointegration implants can predict the long-term clinical success of the implant. The clinical medial–lateral X-rays of 11 patients were reviewed. To eliminate geometrical distortion of different X-rays, they were converted into a digital format and geometrical correction was carried out. Furthermore, the finite element (FE) method was used to investigate how the bone remodeling was affected by the stress/strain distribution in the femur. The review of clinical X-rays showed cortical bone growth around the proximal end of the implant and absorbtion at the distal end of the femur. The FE simulation revealed the stress/strain distribution in the femur of a selected patient. This provided a biomechanical interpretation of the bone remodeling. The existing bone remodeling theories such as minimal strain and strain rate theories were unable to offer satisfactory explanation for the cortical bone growth at the implant side of the proximal femur, where the stress/strain level was much lower than the one in the intact side of the femur. The study established the correlation between stress/strain distribution obtained from FE simulations and the bone remodeling of the clinical review. The cortical bone growth was initiated by the stress/strain gradient in the bone. Through the review of clinical X-rays and FE simulations, the study confirmed that the bone remodeling in a femur with an implant was influenced by the stress/strain redistribution. The strain level and stress gradient hypothesis is presented to offer an explanation for the implanted cortical bone remodeling observed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Baumann J. U., Schar A., Meier G. 1992, Reaction forces and moments at hip and knee Orthopade 21(1):29–34

    PubMed  CAS  Google Scholar 

  2. Baumgartner, A., and C. Mattheck, Computer simulation of the remodelling of trabecular bone. In: Computers in Biomedicine, edited by K. D. Held, C. A. Brebbia, and R. D. Ciskowski. Southampton: Computational Mechanics Publications, 1991, pp. 291–296.

  3. Burger E. H., Klein-Nulend J., Smit T. H. 2003, Strain-derived canalicular fluid flow regulates osteoclast activity in a remodeling osteon—a proposal. J. Biomech. 36(10):1453–1459

    Article  PubMed  Google Scholar 

  4. Carter D. R., Van der Meulen M. C. H., Beaupre G. S. 1996, Mechanical factors in bone growth and development. Bone 18(1):S5–S10

    Article  Google Scholar 

  5. Collet P., Uebelhart D., Vico L., Moro L., Hartmann D., Roth M., Alexandre C. 1997, Effects of 1-and 6-month spaceflight on bone mass and biochemistry in two human. Bone 20(6):547–551

    Article  PubMed  CAS  Google Scholar 

  6. Cowin S. C., 1990, Bone Mechanics. CRC Press, Boca Raton, Florida

    Google Scholar 

  7. Doblaré M., García J. 2001, Application of an anisotropic bone-remodeling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech. 34(9):1157–1170

    Article  PubMed  Google Scholar 

  8. Fischer K. J., Jacobs C. R., Levenston M. E., Carter D. R. 1997, Observations of convergence and uniqueness of node-based bone remodeling simulations. Annl. Biomed. Eng. 25(2):261–268

    Article  CAS  Google Scholar 

  9. Hazelwood S. J., Martin R. B., Rashid M. M., Rodrigo J. J. 2001, A mechanistic model for the internal bone remodeling exhibits different dynamic responses in disuse and overload. J. Biomech. 34:299–308

    Article  PubMed  CAS  Google Scholar 

  10. Huiskes, R. Biomechanics of bone implant interactions. In: Frontiers of Biomechanics, edited by S. Schmid. Springer-Verlag, New York, 1986

  11. Kerner J., Huiskes R., van Lenthe G. H., Weinans H., van Rietbergen B., Engh C. A., Amis A. A. 1999, Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodeling. J. Biomech. 32(7):695–703

    Article  PubMed  CAS  Google Scholar 

  12. Kowalk D. L., Duncan J. A., Vaughan C. L. 1996, Abduction-adduction moments at the knee during stair ascent and descent. J. Biomech. 29(3):383–388

    Article  PubMed  CAS  Google Scholar 

  13. Kufahl R. H., S. Saha 1990, A theoretical-model for stress-generated fluid-flow in the canaliculi lagunae network in bone tissue. J. Biomech. 23(2):171–180

    Article  PubMed  CAS  Google Scholar 

  14. Mattheck, C., and H. Huber-Betzer. CAO: computer simulation of adaptive growth in bones and trees. In: Computers in Biomedicine, edited by K. D. Held, C. A. Brebbia, and R. D. Ciskowski. Southampton: Computational Mechanics Publications, 1991, pp. 243–252

  15. Nishimura Y., Fukuoka H., Kiriyama M., Suzuki Y., Oyama K., Ikawa S., Higurashi M., Gunji A. 1994, Bone turnover and calcium metabolism during 20 days bed rest in young healthy males and females. Acta Physiol. Scand. 150(S616):27–35

    Google Scholar 

  16. Prendergast P., Taylor D. 1994, Prediction of bone adaptation using damage accumulation. J. Biomech. 27(8):1067–1076

    Article  PubMed  CAS  Google Scholar 

  17. Rubin, C. T., and L. E. Lanyon. Biological Modulation of Mechanical Influences in Bone Remodeling. In: Biomechanics of Diarthroidal Joints, edited by V. C. Mow. New York: Springer-Verlag, 1990

  18. Stülpner M. A., Reddy B. D., Starke G. R., Spirakis A. 1997, A three-dimensional finite analysis of adaptive remodeling in the proximal femur. J. Biomech. 30(10):1063–1066

    Article  PubMed  Google Scholar 

  19. Sullivan J., Uden M., Robinson K. P., Sooriakumaran S. 2003, Rehabilitation of the trans-femoral amputee with an osseointegrated prosthesis: the United Kingdom experience. Prosthet. Orthot. Int. 27(2):114–120

    Article  PubMed  CAS  Google Scholar 

  20. Tsubota K., Adachi T., Tomita Y. 2002, Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J. Biomech., 35(12):1541–1551

    Article  PubMed  Google Scholar 

  21. Turner C. H., Anne V., Pidaparti R. 1997, A uniform strain criterion for trabecular bone adaptation: Do continuum-level strain gradients drive adaptation. J. Biomech. 30(6):555–563

    Article  PubMed  CAS  Google Scholar 

  22. Weinans H., Huiskes R., Grootenboer H. J. 1992, The behavoir of adaptive bone-remodeling simulation models. J. Biomech. 25:1425–1441

    Article  PubMed  CAS  Google Scholar 

  23. Xu, W., A. Crocombe, and S. Hughes. Finite element analysis of bone stress and strain around a distal osseointegrated implant for prosthetic limb attachment. Proc. Inst. Mech. Eng. H J. Eng. Med. 214:595–602, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Robinson, K. X-Ray Image Review of the Bone Remodeling Around an Osseointegrated Trans-femoral Implant and a Finite Element Simulation Case Study. Ann Biomed Eng 36, 435–443 (2008). https://doi.org/10.1007/s10439-007-9430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9430-7

Keywords

Navigation