Skip to main content
Log in

Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the physiological cross-sectional area (PCSA) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analyzed and used for scaling the PCSA of each muscle. A linear relationship between the normalized PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm−2, with the length and breadth of the hand expressed in centimeters. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled posture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. An K. N., E. Y. S. Chao, W. P. Cooney, R. L. Linscheid 1979 Normative model of human hand for biomechanical analysis. J. Biomech. 12:775–788

    Article  PubMed  CAS  Google Scholar 

  2. An K. N., E. Y. S. Chao, K. R. Kaufman Analysis of muscle and joint loads. In: Basic Orthopaedics Biomechanics, edited by V.C. Mow. New York: Raven Press Ltd., 1991, pp. 1–50

    Google Scholar 

  3. Brook N., J. Mizrahi, M. Shoham, J. Dayan 1995 A biomechanical model of index finger dynamics. Med. Eng. Phys. 17:54–63

    Article  PubMed  CAS  Google Scholar 

  4. Buchholz B., T. J. Armstrong, S. A. Goldstein 1992 Anthropometric data for describing the kinematics of the human hand. Ergonomics 35:261–273

    Article  PubMed  CAS  Google Scholar 

  5. Daams B. J. 1994 Human Force Exertion in User-Product Interaction. Backgrounds for Design. Delft: Delft University Press

    Google Scholar 

  6. Esteki A., J. M. Mansour 1997 A dynamic model of the hand with application in functional neuromuscular stimulation. Ann. Biomed. Eng. 25:440–451

    Article  PubMed  CAS  Google Scholar 

  7. Holzbaur K. R., W. M. Murray, S. L. Delp 2005 A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33:829–840

    Article  PubMed  Google Scholar 

  8. Lee J. W., K. Rim 1990 Maximum finger force prediction using a planar simulation of the middle finger. Proc. Inst. Mech. Eng. [H] 204:169–178

    CAS  Google Scholar 

  9. Pagowski S., K. Piekarski 1977 Biomechanics of metacarpophalangeal joint. J. Biomech. 10:205–209

    Article  PubMed  CAS  Google Scholar 

  10. Sancho-Bru J. L., D. J. Giurintano, A. Pérez-González, M. Vergara 2003 Optimum tool handle diameter for a cylinder grip. J. Hand Ther. 16:337–342

    PubMed  Google Scholar 

  11. Sancho-Bru J. L., A. Pérez-González, M. Vergara-Monedero, D. J. Giurintano 2001 A 3-D dynamic model of human finger for studying free movements. J. Biomech. 34:1491–1500

    Article  PubMed  CAS  Google Scholar 

  12. Sancho-Bru J. L., A. Pérez-González, M. Vergara-Monedero, D. J. Giurintano 2003 A 3D biomechanical model of the hand for power grip. J. Biomech. Eng. 125:78–83

    Article  PubMed  Google Scholar 

  13. Valero-Cuevas F. J. 2000 Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J. Neurophysiol. 83:1469–1479

    PubMed  CAS  Google Scholar 

  14. Valero-Cuevas F. J. 2005 An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38:673–684

    Article  PubMed  Google Scholar 

  15. Valero-Cuevas F. J., V. R. Hentz 2002 Releasing the A3 pulley and leaving flexor superficialis intact increases pinch force following the Zancolli lasso procedures to prevent claw deformity in the intrinsic palsied finger. J. Orthop. Res. 20:902–909

    Article  PubMed  Google Scholar 

  16. Valero-Cuevas F. J., F. E. Zajac, C. G. Burgar 1998 Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31:693–703

    Article  PubMed  CAS  Google Scholar 

  17. Vergara M., J. L. Sancho-Bru, A. Pérez-González 2003 Description and validation of a non-invasive technique to measure the posture of all hand segments. J. Biomech. Eng. 125:917–922

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by both the Spanish Government and the EU (FEDER funds) through the Project “PN I+D+I, PI021662.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín L. Sancho-Bru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancho-Bru, J.L., Vergara, M., Rodríguez-Cervantes, PJ. et al. Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger. Ann Biomed Eng 36, 102–107 (2008). https://doi.org/10.1007/s10439-007-9395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9395-6

Keywords

Navigation