Skip to main content
Log in

Evaluation of Mechanisms of Postflight Orthostatic Intolerance with a Simple Cardiovascular System Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A significant fraction of astronauts experience postflight orthostatic intolerance (POI) during 10-min stand tests conducted on landing day. The average time that nonfinishers can stand is about 7 min. This phenomenon, including the delay in occurrence of presyncope, was studied with a five-compartment model of the cardiovascular system incorporating compartments for the heart/lungs, systemic arteries and cephalic, central, and caudal veins. The model included 28 independent parameters, including factors characterizing cardiac performance, vascular resistance, intrathoracic pressure, nonlinear venous compliance and circulating blood volume, and 13 dependent parameters, including cardiac output and cardiac and vascular compartment pressures and volumes. First, a sensitivity analysis of hemodynamic indicators of presyncope to independent parameters was performed. Results demonstrated that both cardiac output and arterial pressure were most sensitive to volume-related parameters, particularly total blood volume, and less sensitive to peripheral resistance. Next, a simulated postflight stand test confirmed that fluid loss due to capillary filtration, particularly from the caudal region where transmural pressure is high during standing, is a plausible mechanism of POI that also explains the delayed onset of symptoms in most astronauts. An accumulated drop in arterial pressure sufficient to compromise cerebral perfusion and, therefore, cause syncope was reached in about 7 min with a fluid loss of 280 mL. Finally, additional simulations showed that a 75% increase in peripheral resistance, similar to finishers of stand tests, was insufficient to overcome the loss of circulating fluid associated with capillary filtration, and extended the time that the modeled astronaut could stand by only about 1 min. It is therefore concluded that capillary filtration may play a key role in producing POI and that development of countermeasures should perhaps focus on reducing postflight capillary permeability or on stimulating volume-compensating mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aratow M., Fortney S. M., Watenpaugh D. E., Crenshaw A. G., Hargens A. R. 1993 Transcapillary fluid responses to lower body negative pressure. J. Appl. Physiol. 74(6):2763–2770

    PubMed  CAS  Google Scholar 

  2. Asmussen E., Christiansen E. H., Nielsen M. 1940 The regulatory circulation in different postures. Surgery 8:604

    Google Scholar 

  3. Baisch, F., L. Beck, G. Blomqvist, G. Wolfram, J. Drescher, J.-L. Rome, and C. Drummer. Cardiovascular response to lower body negative pressure stimulation before, during and after space flight. Eur. J. Clin. Invest. 30(12):1055–1065, 2000

    Google Scholar 

  4. Berry, C. A., and A. D. Catterson. Pre-Gemini medical predictions versus Gemini flight results. In: Gemini Summary Conference, Manned Spacecraft Center, Houston, TX, Feb 1–2, 1967, pp. 197–281 (NASA SP-138)

  5. Blomqvist, C. G., and H. L. Stone. Cardiovascular adjustments to gravitational stress. In: Handbook of Physiology, Section 2, The Cardiovascular System, edited by J. T. Shepherd et al. Am Physiol Soc, 1982, pp. 1025–1063

  6. Brown C. M., Hainsworth R. 1999 Assessment of capillary fluid shifts during orthostatic stress in normal subjects and subjects with orthostatic intolerance. Clin. Autonomic Res. 9(2):69–73

    Article  CAS  Google Scholar 

  7. Boyers D. G., Cuthbertson J. G., Luetscher J. A. 1972 Simulation of the human cardiovascular system: a model with normal responses to change of posture, blood loss, transfusion and autonomic blockade. Simulation 18:197–206

    Google Scholar 

  8. Buckey J. C., Lane L. D., Levine B. D., Watenpaugh D. E., Wright S. J., Moore W. E., Gaffney F. A., Blomqvist C. G. 1996 Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81(1):7–18

    PubMed  Google Scholar 

  9. Charles J. B., Lathers C. M. 1991 Cardiovascular adaptation to spaceflight. J. Clin. Pharmacol. 31:1010–1023

    PubMed  CAS  Google Scholar 

  10. Charles, J. B., M. W. Bungo, and G. W. Fortner. Cardiopulmonary Function. In: Space Physiology and Medicine, Chap 14, edited by A. E. Nicogossian, C. L. Huntoon, and S. L. Pool. Philadelphia, PA: Lea & Febiger, 1994

  11. Ebert T. J., Smith J. J., Barney J. A., Merrill D. C., Smith G. K. 1986 The use of thoracic impedance for determining thoracic blood volume in man. Aviat. Space Environ. Med. 57:49

    PubMed  CAS  Google Scholar 

  12. Evans J. M., Leonelli F. M., Ziegler M. G., McIntosh C. M., Patwardhan A. R., Ertl A. C., Kim C. S., Knapp C. F. 2001 Epinephrine, vasodilation and hemoconcentration in syncopal, healthy men and women. Autonom. Neurosci. 93:79–90

    Article  CAS  Google Scholar 

  13. Finnerty F. A. Jr., Witkin L., Fazek J. F. 1954 Cerebral hemodynamics during cerebral ischemia induced by acute hypotension. J. Clin. Invest. 33: 1227

    PubMed  Google Scholar 

  14. Fritsch-Yelle J. M., Charles J. B., Jones M. M., Breightol L. A., Eckberg D. L. 1994 Space flight alters autonomic regulation of arterial pressure in humans. J. Appl. Physiol. 77:1776–1783

    PubMed  CAS  Google Scholar 

  15. Fritsch-Yelle J. M., Whitson P. A., Bondar R. L., Brown T. E. 1996 Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J. Appl. Physiol. 81(5):2134–2141

    PubMed  CAS  Google Scholar 

  16. Gauer O. N., Thron H. L. 1965 Postural change in the circulation. In: Hamilton W. F., Dow P. (Eds) Handbook of Physiology, Sect. 2, Circulation. Vol. 3, American Physiological Society, Washington, DC, p. 2409

    Google Scholar 

  17. Goldstein M. A., Edwards R. J., Schroeter J. P. 1992 Cardiac morphology after conditions of microgravity during Cosmos 2044. J. Appl. Physiol. 73(2 Suppl):94S–100S

    PubMed  CAS  Google Scholar 

  18. Hagan R. D., Diaz F. J., Horvath S. M. 1978 Plasma volume changes with movement to the upright position. J. Appl. Physiol. 45:414

    PubMed  CAS  Google Scholar 

  19. Heldt T., Shim E. B., Kamm R. D., Mark R. G. 2002 Computational model of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92:1239–1254

    PubMed  Google Scholar 

  20. Henry J. P., Gauer O., Kety S., Kramer K. 1951 Factors maintaining cerebral circulation during gravitational stress. J. Clin. Invest. 30:292–301

    Article  PubMed  CAS  Google Scholar 

  21. Hinghofer-Szalkay H., Kravik S. E., Greenleaf J. E. 1988 Effect of lower-body positive pressure on postural fluid shifts in men. Eur. J. Appl. Physiol. 57:48–54

    Article  Google Scholar 

  22. Hinghofer-Szalkay H., Konig E. M., Sauseng-Fellegger G., Zambo-Polz C. 1992 Biphasic blood volume changes with lower body suction in humans. Am. J. Physiol. 263:H1270–H1275

    PubMed  CAS  Google Scholar 

  23. Lanne T., Lundvall J. 1989 Very rapid net transcapillary fluid absorption from skeletal muscle and skin in man during pronounced hypovolaemic circulatory stress. Acta Physiol. Scand. 136:1–6

    PubMed  CAS  Google Scholar 

  24. Lanne T., Edfeldt H., Lundvall J. 1989 Failure of the venous pressure decline in hypovolaemia to be transmitted to the capillary level and cause compensatory absorption of extravascular fluid into the circulation. Acta Physiol. Scand. 136:141–142

    Article  PubMed  CAS  Google Scholar 

  25. Lathers C. M., Charles J. B., Elton K. F., Holt T. A., Mukai C., Bennett B. S., Bungo M. W. 1989 Acute hemodynamic responses to weightlessness in humans. J. Clin. Pharmacol. 29:615–627

    PubMed  CAS  Google Scholar 

  26. Leach C. S., Alfrey C. P., Suki W. N., Leonard J. I., Rambaut P. C., Inners D., Smith S. M., Lane H. W., Krauhs J. M. 1996 Regulation of body fluid compartments during short-term spaceflight. J. Appl. Physiol. 81(1):105–116

    PubMed  CAS  Google Scholar 

  27. Louisy, F., D. Cauquil, C. Andre-Deshays, P. Schroiff, M. Lazerges, C. Lafaye, A. L. Camus, and G. Gallina. Air plethysmography: an alternative method for assessing peripheral circulatory adaptations during spaceflights. Eur. J. App. Physiol. 85(3–4):383–391, 2001

    Article  CAS  Google Scholar 

  28. Mellander S. 1978 On the control of capillary fluid transfer by precapillary and postcapillary vascular adjustments. Microvasc. Res. 15:319–330

    Article  PubMed  CAS  Google Scholar 

  29. Pantalos, G. M., J. Mathias, M. K. Sharp, D. Watenpaugh, J. Buckey, S. Parnis, and A. Hargens. Variations in esophageal and abdominal pressure in humans during parabolic an space flight. In: Abstr. Aerospace. Med. Assoc., 1997

  30. Ramsdell C. G., Mullen T. J., Sundby G. H., Rostoft S., Sheynberg N., Aljuri N., Maa M., Mukkamala R., Sherman D., Toska K., Yelle J., Bloomfield D., Williams G. H., Cohen R. J. 2001 Midodrine prevents orthostatic intolerance associated with simulated spaceflight. J. Appl. Physiol. 90:2245–2248

    PubMed  CAS  Google Scholar 

  31. Shubrook S. J., Leverett S. D. 1973 Effect of the valsalva maneuver on tolerance to +Gz acceleration. J. Appl. Physiol. 34(4):460–466

    Google Scholar 

  32. Smith J. J. (ed) 1990 Circulatory Response to the Upright Posture. CRC Press, Boca Raton, FL

    Google Scholar 

  33. Thornton, W. E., and J. A. Rummel. Muscular deconditioning and its prevention in space flight. In: Biomedical Results from Skylab, edited by R. S. Johnston and L. F. Dietlein. Washington, DC: NASA, 1977, pp. 191–197 (SP-377)

  34. Thornton, W. E., and G. W. Hoffler. Hemodynamic studies of the legs under weightlessness. In: Biomedical Results from Skylab, edited by R. S. Johnston and L. F. Dietlein. Washington, DC: NASA, 1977, pp. 324–329 (SP-377)

  35. Watenpaugh, D. E., and A. R. Hargens. The cardiovascular system in microgravity. In: Handbook of Physiology-Environmental Physiology, Chap 29. New York: Oxford University Press, 1995

  36. Waterfield R. L. 1931 The effects of posture on the circulating blood volume. J. Physiol. 72:1:110–120

    Google Scholar 

  37. Waters W. W., Ziegler M. G., Meck J. V. 2001 Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J. Appl. Physiol. 92:586–594

    Google Scholar 

  38. White R. J., Blomqvist C. G. 1998 Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol. 85(2):738–476

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keith Sharp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broskey, J., Sharp, M.K. Evaluation of Mechanisms of Postflight Orthostatic Intolerance with a Simple Cardiovascular System Model. Ann Biomed Eng 35, 1800–1811 (2007). https://doi.org/10.1007/s10439-007-9341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9341-7

Keywords

Navigation