Skip to main content
Log in

Effect of the Structural Water on the Mechanical Properties of Collagen-like Microfibrils: A Molecular Dynamics Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this paper is to investigate the role played by the structural water on the intermolecular sliding between collagen-like 1QSU peptides in a microfibril under deformation. Three modes of deformation are used to generate intermolecular sliding: forced axial stretching (case I) or sliding (case II) of a central peptide monomer (while other surrounding monomers are fixed); and cantilever bending (case III) under a terminal lateral load. The force–displacement curve of each deformation mode is derived using a module called Steered Molecular Dynamics (SMD) in a molecular dynamics package NAMD under the CHARMM22 force field. Each calculation is carried out twice, one in the presence of structural water, one without. It is found that the structural water is a weak “lubricant” in forced axial stretching (case I), but it functions as a “glue” in forced axial sliding (case II) and cantilever bending (case III). A change in the pulling speed does not significantly alter the force–displacement behavior in axial stretching (case I) and sliding (case II), but it does in cantilever bending (case III). The additional resistance contributed by the structural water is attributed to the additional energy cost in breaking the water-mediated hydrogen bonds (water bridges).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

BFP:

biomembrane force probes

1CGD:

protein databank ID of the collagen-like, alanine replacement peptide, also called Gly→Ala.

1QSU:

protein databank ID of the collagen-like, EKG replacement peptide

BPTI:

bovine pancreatic trypsin inhibitor

CHARMM:

Chemistry at HARvard Molecular Mechanics

CHEM3D:

name of a commercial molecular modeling package

CPU:

central processing unit

EKG:

glutamate-lysine-glycine

GLU:

three letter code for glutamate (E)

GLY:

three letter code for glycine (G)

GROMACS:

name of an open-access molecular dynamics package using GROMOS96 force field

GROMOS96:

name of a force field with open access, GROMOS stands for “GROningen MOlecular Simulation”

LOT:

laser optical tweezers

LYS:

three letter code for lysine (K)

MD:

molecular dynamics

MM:

molecular mechanics

NAMD:

Not Another Molecular Dynamics

NMR:

nuclear magnetic resonance

PDB:

protein data bank

RATTLE:

name of an algorithm to apply constraints in MD

RMSD:

root mean square deviation

SMD:

steered molecular dynamics

SPC/E:

name of a configurational model of the water molecule

TIP3P:

name of a configurational model of the water molecule

VMD:

visual molecular dynamics

WAXD:

wide angle X-ray diffraction

X-PLOR :

name of a software used in X-ray crystallography and NMR

References

  1. Andersen H. C. (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comp. Phys. 52: 24–34

    Article  CAS  Google Scholar 

  2. Bailey A. J., Robins S. P., Balian G. (1974) Biological significance of the intermolecular crosslinks of collagen. Nature 251: 105–109

    Article  PubMed  CAS  Google Scholar 

  3. Bella J., Eaton M., Brodsky B., Berman H. M. (1994) Crystal and molecular structure of a collagen-like peptide at 1.9Å resolution. Science 266: 75–81

    Article  PubMed  CAS  Google Scholar 

  4. Bella J., Brodsky B., Berman H. M. (1995) Hydration structure of a collagen peptide. Structure 3: 893–906

    Article  PubMed  CAS  Google Scholar 

  5. Berendsen H. J. C. (1962) Nuclear magnetic resonance study of collagen hydration. J. Chem. Phys. 36(12): 3297–3305

    Article  CAS  Google Scholar 

  6. Bohinski R. C. (1987) Modern Concepts in Biochemistry. 5th ed. Englewood Cliffs, New Jersey: Prentice Hall

    Google Scholar 

  7. Broz J. J., Simske S. J., Greenberg A. R., Luttges M. W. (1993) Effects of rehydration state on the flexural properties of whole mouse long bones J. Biomech. Eng. 115(4A): 447–449

    PubMed  CAS  Google Scholar 

  8. Brünger, A. T. X-PLOR, Version 3.1: A System of X-ray Crystallography and NMR. The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, 1992.

  9. Csermely P. (2001) Water and cellular folding processes Cell Mol. Biol. (Noisy-le-grand). 47(5): 791–800

    CAS  Google Scholar 

  10. Currey J. D. (1988) The effects of drying and re-wetting on some mechanical properties of cortical bone. J. Biomech. 21(5): 439–441

    Article  PubMed  CAS  Google Scholar 

  11. Cusack S., Miller A. (1979) Determination of the elastic constants of collagen by Brillouin light scattering J. Mol. Biol. 135: 39–51

    Article  PubMed  CAS  Google Scholar 

  12. Eliav U., Navon G. (2002) Multiple quantum filtered NMR studies of the interaction between collagen and water in the tendon. J. Am. Chem. Soc. 124(12): 3125–3132

    Article  PubMed  CAS  Google Scholar 

  13. Fernandez-Seara M. A., Wehrli S. L., Takahashi M., Wehrli F. W. (2004) Water content measured by proton–deuteron exchange NMR predicts bone mineral density and mechanical properties. J. Bone Miner. Res. 19(2): 289–296

    Article  PubMed  Google Scholar 

  14. Fischer S., Verma C. S. (1999) Binding of buried structural water increases the flexibility of proteins Proc. Natl. Acad. Sci. USA 96: 9613–9615

    Article  PubMed  CAS  Google Scholar 

  15. Fraser R. D. B., MacRae T. P. (1973) Conformation in Fibrous Proteins. New York, Academic Press

    Google Scholar 

  16. Fraser R. D., MacRae T. P., Miller A., Suzuki E. (1983) Molecular conformation and packing in collagen fibrils. J. Mol. Biol. 167(2): 497–521

    Article  PubMed  CAS  Google Scholar 

  17. Fratzl P., Misof K., Zizak I., Rapp G., Amenitsch H., Bernstorff S. (1998) Fibrillar structure and mechanical properties of collagen J. Struct. Biol. 122: 119–122

    Article  PubMed  CAS  Google Scholar 

  18. Fudge D. S., Gosline J. M. (2004) Molecular design of the α-keratin composite: insights from a matrix-free model, hagfish slime threads. Proc. R. Soc. Lond. B 271: 291–299

    Article  CAS  Google Scholar 

  19. Fung Y. C. (1993) Biomechanics: Mechanical Properties of Living Tissues. 2nd Edn. New York, Springer

    Google Scholar 

  20. Glimcher, M. J. Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. In: Handbook of Physiology, vol 7 Endocrinology, edited by R. O. Greep, and E. B. Astwood. Washington, DC: American Physiological Society, 1976

  21. Harley R., James D., Miller A., White J. W. (1977) Phonons and the elastic moduli of collagen and muscle. Nature 267: 285–287

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann H., Voss T., Kuhn K., Engel J. (1984) Localization of flexible sites in thread-like molecules from electron micrographs-Comparison of interstitial, basement membrane and intima collagen. J. Mol. Biol. 172: 325–343

    Article  PubMed  CAS  Google Scholar 

  23. Hopfinger A. J. Intermolecular Interactions and Biomolecular Organization. New York. John Wiley & Sons, pp. 113–143, 1977.

    Google Scholar 

  24. Humphrey W., Dalke A., Schulten K. (1996) VMD: Visual Molecular Dynamics, J. Mol. Graphics 14: 33–38

    Article  CAS  Google Scholar 

  25. Hypercube, Inc. Hyperchem 6.2, http://www.hyper.com/products/default.htm (2002)

  26. Isralewitz B, Gao M., Schulten K. (2001) Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11: 224–230

    Article  PubMed  CAS  Google Scholar 

  27. Izrailev S., Stepaniants S., Balsera M., Oono Y., Schulten K. (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72: 1568–1581

    PubMed  CAS  Google Scholar 

  28. Jarzynski C. (1997) Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78: 2690–2693

    Article  CAS  Google Scholar 

  29. Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79: 926–935

    Article  CAS  Google Scholar 

  30. Kramer, R. Z. X-ray crystallographic Structural Studies of Three Collagen-like Peptides, PhD thesis, New Brunswick. New Jersey, USA, Rutgers, SUNJ, 1998.

  31. Kramer R. Z., Berman H. M. (1998) Patterns of hydration in crystalline collagen peptides. J. Biomol. Struct. Dynam. 16: 367–380

    CAS  Google Scholar 

  32. Kramer R. Z., Venugopal M., Bella J., Mayville P., Brodsky B., Berman H. M. (2000) Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair. J. Mol. Biol. 301: 1191–1205

    Article  PubMed  CAS  Google Scholar 

  33. Kuznetsova N., Chi S. L., Leikin S. (1998) Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between helices. Biochemistry 37: 11888–11895

    Article  PubMed  CAS  Google Scholar 

  34. Leikin S., Parsegian V. A., Yang W.–H., Walrafen G. E. (1997) Raman spectral evidence for hydration forces between collagen triple helices. Proc. Natl. Acad. Sci. 94: 11312–11317

    Article  PubMed  CAS  Google Scholar 

  35. Lorenzo A. C., Caffarena E. R. (2005) Elastic properties, Young’s modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics. J. Biomech. 38: 1527–1533

    Article  PubMed  Google Scholar 

  36. Lu H., Isralewitz B., Krammer A., Vogel V., Schulten K. (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75: 662–667

    PubMed  CAS  Google Scholar 

  37. Lu H., Schulten K. (2000) The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys. J. 79: 51–65

    PubMed  CAS  Google Scholar 

  38. MacKerell Jr. A. D., Bashford D., Bellott M., Dunbrack R. L. Jr., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F. T. K., Mattos C., Michnick S., Ngo T., Nguyen D. T., Prodhom B., Reiher W. E. III., Roux B., Schlenkrich M., Smith J. C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102: 3586–3616

    Article  CAS  Google Scholar 

  39. Makarov V. A., Andrews B. K., Smith P. E., Pettitt B. M. (2000) Residence times of water molecules in the hydration sites of myoglobin. Biophys. J. 79: 2966–2974

    Article  PubMed  CAS  Google Scholar 

  40. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397: 50–53

    Article  PubMed  CAS  Google Scholar 

  41. Naito A., Tuzi S., Saito H. (1994) A high-resolution 15N solid-state NMR study of collagen and related polypeptides. The effect of hydration on formation of interchain hydrogen bonds as the primary source of stability of the collagen-type triple helix. Eur. J. Biochem. 224: 729–734

    Article  PubMed  CAS  Google Scholar 

  42. Nakasako M. (2004) Water–protein interactions from high-resolution protein crystallography. Phil. Trans. R. Soc. Lond. B 359: 1191–1206

    Article  CAS  Google Scholar 

  43. Nestler F. H. M., Hvidt S., Ferry J. D. (1983) Flexibility of collagen determined from dilute solution viscoelastic measurements. Biopolymers 22: 1747–1758

    Article  PubMed  CAS  Google Scholar 

  44. Neuman W. F., Neuman M. W. (1958) The Chemical Dynamics of Bone Mineral. Chicago, IL, University of Chicago Press

    Google Scholar 

  45. Nomura S., Hiltner A., Lando J. B., Baer E. (1977) Interaction of water with native collagen. Biopolymers 16: 231–246

    Article  PubMed  CAS  Google Scholar 

  46. Ottani V., Martini D., Franchi M., Ruggeri A., Raspanti M. (2002) Hierarchical structures in fibrillar collagens. Micron 33: 587–596

    Article  PubMed  CAS  Google Scholar 

  47. Paci E., Karplus M. (1999) Forced unfolding of fibronectin type 3 modules: An analysis by biased molecular dynamics simulations. J. Mol. Biol. 288: 441–459

    Article  PubMed  CAS  Google Scholar 

  48. Petruska J. A., Hodge A. J. (1964) A subunit model for the tropocollagen macromolecule. Proc. Natl. Acad. Sci. USA 51: 871–876

    Article  PubMed  CAS  Google Scholar 

  49. Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kale L., Schulten K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26: 1781–1802

    Article  PubMed  CAS  Google Scholar 

  50. Piekarski K. (1973) Analysis of bone as a composite material Int. J. Eng. Sci. 11(6A): 557

    Article  CAS  Google Scholar 

  51. Pineri M. H., Escoubes M., Roche G. (1978) Water-collagen interactions: Calorimetric and mechanical experiments. Biopolymers 17: 2799–2815

    Article  PubMed  CAS  Google Scholar 

  52. Robinson R. A. (1952) An electron microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J. Bone Joint Surg. 34-A: 389–434

    PubMed  CAS  Google Scholar 

  53. Sasaki N., Odajima S. (1996) Stress–strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J. Biomech. 29(5): 655–658

    Article  PubMed  CAS  Google Scholar 

  54. Smith J. W. (1968) Molecular pattern in native collagen. Nature 219: 157–158

    Article  PubMed  CAS  Google Scholar 

  55. Thornton G. M., Shrive N. G., Frank C. B. (2001) Altering ligament water content affects ligament pre-stress and creep behavior. J. Orthop. Res. 19: 845–851

    Article  PubMed  CAS  Google Scholar 

  56. Vesentini S., Fitie C. F. C., Montevecchi F. M., Redaelli A. (2005) Molecular assessment of the elastic properties of collagen-like homotrimer sequences. Biomechan. Model. Mechanobiol. 3: 224–234

    Article  CAS  Google Scholar 

  57. Williams R. J. P., Fausto da Silva J. J. R. (1996) The Natural Selection of the Chemical Elements. New York, Oxford University Press

    Google Scholar 

  58. Yeni Y. N., Brown C. U., Norman T. L. (1998) Influence of bone composition and apparent density on fracture toughness of the human femur and tibia. Bone 22(1): 79–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial supports from Rutgers, State University of New Jersey. The authors also thank Virginia Dare for proofreading a final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Chippada, U. & Jordan, K. Effect of the Structural Water on the Mechanical Properties of Collagen-like Microfibrils: A Molecular Dynamics Study. Ann Biomed Eng 35, 1216–1230 (2007). https://doi.org/10.1007/s10439-007-9296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9296-8

Keywords

Navigation