Skip to main content
Log in

Q-Method for High-Resolution, Whole-Cell Patch-Clamp Impedance Measurements Using Square Wave Stimulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

High-resolution measurements of cell impedance provide invaluable information on various cellular processes such as exocytosis, ion channel gating, or fertilization. The best recent techniques, although achieving impedance resolution at theoretical limits, have limited applicability due to their inherent constrains and high complexity. We report here a simple method of high-resolution impedance measurement, dubbed as the Q-method, based on measurement of a charge by integrating the cell current during square wave stimulation and on its decomposition into specific components related to segments of the voltage stimulus. Simple relations were derived allowing very fast and direct estimation of cell impedance parameters. The major advantages of the Q-method are its inherently low sensitivity to low-pass filtering, rejection of periodic interference signals, automatic on-the-fly adjustment of the stimulation frequency for the highest capacitance resolution, and simultaneous high-resolution low-crosstalk monitoring of membrane resistance, series resistance and parasitic capacitance in addition to membrane capacitance. Implementation of the Q-method is straightforward with any patch-clamp setup and any cell type. Theoretical grounds of the Q-method, including its resolution and the noise of individual parameters, are developed and experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.

Similar content being viewed by others

REFERENCES

  1. Armstrong, C. M., and F. Bezanilla. Charge movement associated with opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63:533–552, 1974.

    Article  PubMed  CAS  Google Scholar 

  2. Barnett, D. W., and S. Misler. An optimized approach to membrane capacitance estimation using dual-frequency excitation. Biophys. J. 72:1641–1658, 1997.

    PubMed  CAS  Google Scholar 

  3. Bean, B. P., and E. J. Rios. Nonlinear charge movement in mammalian cardiac ventricular cells. Components from Na and Ca channel gating. J. Gen. Physiol. 94:65–93, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, P., and K. D. Gillis. The noise of membrane capacitance measurements in the whole-cell recording configuration. Biophys. J. 79:2162–2170, 2000.

    PubMed  CAS  Google Scholar 

  5. Debus, K., J. Hartmann, G. Kilic, and M. Lindau. Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique. Biophys. J. 69:2808–2822, 1995.

    PubMed  CAS  Google Scholar 

  6. Fernandez, J. M., F. Bezanilla, and R. E. Taylor. Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents. J. Gen. Physiol. 79:41–67, 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Fidler, N., and J. M. Fernandez. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys. J. 56:1153–1162, 1989.

    PubMed  CAS  Google Scholar 

  8. Gillis, K. D. Techniques for membrane capacitance measurements. In: Single-Channel Recording 2nd edition, edited by B. Sakmann and E. Neher. New York: Plenum Press, 1995, pp. 155–198.

    Google Scholar 

  9. Hadley, R. W., and W. J. Lederer. Properties of L-type calcium channel gating current in isolated guinea pig ventricular myocytes. J. Gen. Physiol. 98:265–285, 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Joshi, C., and J. M. Fernandez. Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys. J. 53:885–892, 1988.

    PubMed  CAS  Google Scholar 

  11. Kilic, G., and M. Lindau. Voltage-Dependent Membrane Capacitance in Rat Pitiutary Nerve Terminals Due to Gating Currents. Biophys. J. 80:1220–1229, 2001.

    PubMed  CAS  Google Scholar 

  12. Lindau, M., and E. Neher. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pfluegers Arch./Eur. J. Physiol. 411:137–146, 1988.

    Article  CAS  Google Scholar 

  13. Neher, E., and A. Marty. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 79:6712–6716, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Robichova, S., and and D. Slamenova. Effects of vitamins C and E on cytotoxicity induced by N-nitroso compounds, N-nitrosomorpholine and N-methyl-N’-nitro-N-nitrosoguanidine in Caco-2 and V79 cell lines. Cancer Lett. 182:11–18, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Rohliček, V., and A. Schmid. Dual-frequency method for synchronous measurement of cell capacitance, membrane conductance and access resistance on single cells. Pfluegers Arch./Eur. J. Physiol. 428:30–38, 1994.

    Article  Google Scholar 

  16. Ryu, S. Y., S. H. Lee, G. Isenberg, W. K. Ho, and Y. E. Earm. Monitoring of ANP secretion from single atrial myocytes using densitometry. Pfluegers Arch./Eur. J. Physiol. 444:568–577, 2002.

    Article  CAS  Google Scholar 

  17. Santos-Sacchi, J. Determination of cell capacitance using the exact empirical solution of ∂Y/∂Cm and its phase angle. Biophys. J. 87:714–727, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Shirokov, R., R. Levis, N. Shirokova, and E. Rios. Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes. J. Gen. Physiol. 99:863–895, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Sigworth, F. J., H. Affolter, and E. Neher. Design of the EPC-9, a computer-controlled patch-clamp amplifier. 2. Software. J. Neurosci. Methods 56:203–215, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Sophocles, J. O. Introduction to signal processing. Upper Saddle River: Prentice Hall, 1996, 798 pp.

    Google Scholar 

  21. Thompson, R. E., M. Lindau, and W. W. Webb. Robust, high-resolution, whole cell patch-clamp capacitance measurements using square wave stimulation. Biophys. J. 81:937–948, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Zahradníková, A., Z. Kubalová, J. Pavelková, S. Györke, and I. Zahradník. Activation of calcium release assessed by calcium release-induced inactivation of calcium current in rat cardiac myocytes. Am. J. Physiol. Cell. Physiol. 286:C330–C341, 2004.

    Article  PubMed  Google Scholar 

  23. Zaniboni, M., F. Cacciani, and M. Groppi. Effect of input resistance voltage-dependency on DC estimate of membrane capacitance in cardiac myocytes. Biophys. J. 89:2170–2181, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank to A. Zahradníková for expert comments on the manuscript and G. Gajdošíková for technical assistance. This work was supported by APVT-51-031104 and VEGA 2/4153/24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zahradník.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novák, P., Zahradník, I. Q-Method for High-Resolution, Whole-Cell Patch-Clamp Impedance Measurements Using Square Wave Stimulation. Ann Biomed Eng 34, 1201–1212 (2006). https://doi.org/10.1007/s10439-006-9140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9140-6

Keywords

Navigation