Skip to main content

Advertisement

Log in

Single Particle Tracking Across Sequences of Microscopical Images: Application to Platelet Adhesion Under Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A versatile and automated image processing technique and data extraction procedure from videomicroscopic data is presented. The motivation is a detailed quantification of blood platelet adhesion from laminar flow onto a surface. The characteristics of the system under observation (type of cells, their speed of movement, and the quality of the optical image to analyze) provided the criteria for developing a new procedure enabling tracking for long image sequences. Specific features of the novel method include: automatic segmentation methodology which removes operator bias; platelet recognition across the series of images based on a probability density function (two-dimensional, Gaussian-like) tailored to the physics of platelet motion on the surface; options to automatically tune the procedure parameters to explore different applications; integrated analysis of the results (platelet trajectories) to obtain relevant information, such as deposition and removal rates, displacement distributions, pause times and rolling velocities. Synthetic images, providing known reference conditions, are used to test the method. The algorithm operation is illustrated by application to images obtained by fluorescence microscopy of the interaction between platelets and von Willebrand factor-coated surfaces in parallel-plate flow chambers. Potentials and limits are discussed, together with evaluation of errors resulting from an inaccurate tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Similar content being viewed by others

REFERENCES

  1. Acton, S. T., K. Wethmar, and K. Ley. Automatic tracking of rolling leukocytes in vivo. Microvasc. Res. 63:139–148, 2002.

    Article  PubMed  Google Scholar 

  2. Alon, R., S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell. Biol. 138:1169–1180, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, C. M., G. N. Georgiou., I. E. Morrison, G. V. Stevenson, and R. J. Cherry. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera: low-density lipoprotein and influenza virus receptor mobility at 4°C. J. Cell Sci. 101:415–425, 1992.

    PubMed  Google Scholar 

  4. Cheezum, M. K., W. F. Walker, and W. H. Guilford. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81:2378–2388, 2001.

    PubMed  CAS  Google Scholar 

  5. Chen, S. and T. A. Springer. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 144:185–200, 1999.

    Google Scholar 

  6. Doggett, T. A., G. Girdhar, A. Lawshe, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GP Ibα-vWF tether bond. Biophys. J. 83:194–205, 2002.

    PubMed  CAS  Google Scholar 

  7. Dow, J. A., J. M. Lackie and K. V. Crocket A simple microcomputer-based system for real-time analysis of cell behaviour. J. Cell Sci. 87:171–182, 1987.

    PubMed  Google Scholar 

  8. Gelles, J., B. J. Schnapp, and M. P. Sheetz. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Gerlich, D., J. Mattes, and R. Eils. Quantitative motion analysis and visualization of cellular structures. Methods 29:3–13, 2003.

    Article  PubMed  CAS  Google Scholar 

  10. Ghosh, R. N., and W. W. Webb. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66:1301–1318, 1994.

    PubMed  CAS  Google Scholar 

  11. Goldsmith, H. L., and V. T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. Thromb. Haemost. 55:415–435, 1986.

    PubMed  CAS  Google Scholar 

  12. Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A. M. Benoliel, M. C. Alessi, S. Kaplanski, and P. Bongrand. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys. J. 64:1653–4, 1993.

    Google Scholar 

  13. Kerre, E. E., and M. Nachtegael. Fuzzy Techniques in Image Processing. Heidelberg: Physica-Verlag, 2000.

    Google Scholar 

  14. Knuth, D. The Art of Computer Programming, Vol. 2, 2nd ed. Reading: Addison-Wesley, 1981.

    Google Scholar 

  15. Kumar, R. A., J.-F. Dong, J. A. Thaggard, M. A. Cruz, J. A. Lopez, and L. V. McIntire. Kinetics of GPIbα-vWF-A1 tether bond under flow: effect of GPIbα mutations on the association and dissociation rates. Biophys. J. 85:4099–4109, 2003.

    Article  PubMed  CAS  Google Scholar 

  16. Lim, J. S. Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1990.

    Google Scholar 

  17. Machin, M., A. Santomaso, M. R. Cozzi, M. Battiston, M. Mazzucato, L. De Marco, and P. Canu. Characterization of platelet adhesion under flow using microscopic image sequence analysis. Int. J. Artif. Organs 28:678–685, 2005.

    PubMed  CAS  Google Scholar 

  18. MATLAB, The MathWorks, Inc., version 7, Release 14 with service pack 1 and image processing toolbox version 5.0.1, 2005.

  19. Mazzucato, M., P. Pradella, M. R. Cozzi, L. De Marco, and Z. M. Ruggeri. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibα mechanoreceptor. Blood 100:2793–2800, 2002.

    Article  PubMed  CAS  Google Scholar 

  20. Mitra, S. K. Digital Signal Processing. New York: McGraw-Hill, 2001.

    Google Scholar 

  21. Miyata, S., and Z. M. Ruggeri. Distinct structural attributes regulating von Willebrand factor A1 domain interaction with platelet glycoprotein Ibα under flow. J. Biol. Chem. 274:6586–6593, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Nazar, A. M., E. A. Silva, and J. J. Ammann. Image Processing for Particle Characterization. Mater. Characterization 36:165–173, 1996.

    Article  CAS  Google Scholar 

  23. Otsu, N. A threshold selection method from gray-level histograms. TSMCA TSMC- 9:62–66, 1979.

    Google Scholar 

  24. Pierres, A., A. M. Benoliel, and P. Bongrand. Measuring bonds between surface-associated molecules. J. Immunol Methods 196:105–20, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Pierres, A., A. M. Benoliel, and P. Bongrand. Use of a laminar flow chamber to study the rate of bond formation and dissociation between surface-bound adhesion molecules: effect of applied force and distance between surfaces. Faraday Discuss. 111:321–330, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Pierres, A., A. M. Benoliel, and P. Bongrand. Cell fitting to adhesive surfaces: a prerequisite to firm attachment and subsequent events. Eur. Cells Mater. 3:31–45, 2002.

    CAS  Google Scholar 

  27. Ruggeri, Z. M. Platelets in atherothrombosis. Nature Med. 8:1227–1234, 2002.

    Article  PubMed  CAS  Google Scholar 

  28. Russ, J. C. Computer-Assisted Microscopy: the Measurement and Analysis of Images. New York, Plenum Press, 1990.

    Google Scholar 

  29. Sabri, S., F. Richelme, A. Pierres, A. M. Benoliel, and P. Bongrand. Interest of image processing in cell biology and immunology. J. Immunol. Methods 208:1–27, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Sakariassen, K. S., V. T. Turitto, and H. R. Baumgartner. Recollections of the development of flow devices for studying mechanisms of hemostasis and thrombosis in flowing whole blood. J. Thromb. Haemost. 2:1681–1690, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Savage, B., E. Saldivar, and Z. M. Ruggeri. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Saxton, M. J., and K. Jacobson. Single particle tracking: applications to membrane dynamics. Ann. Rev. Biophys. Biomol. Struct. 26:373–399, 1997.

    Article  CAS  Google Scholar 

  33. Seinfeld, J. H., and S. N. Pandis. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: Wiley, 1998.

    Google Scholar 

  34. Smith, M. J., E. L. Berg, and M. B. Lawrence. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys. J. 77:3371–3383, 1999.

    PubMed  CAS  Google Scholar 

  35. Turitto, V. T., and H. J. Weiss. Red blood cells: their dual role in thrombus formation. Science 207:541–543, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Tvarusko, W., M. Bentele, T. Misteli, R. Rudolf, C. Kaether, D. L. Spector, H. H. Gerdes, and R. Eils. Time-resolved analysis and visualization of dynamic processes in living cells. Proc. Natl. Acad. Sci. 96:7950–7955, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Usami, S., H. H. Chen, Y. Zhao, S. Chien, and R. Skalak. Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21:77–83, 1999.

    Article  Google Scholar 

  38. Vincent, L., and P. Soille. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. TPAMI 13:583–598, 1991.

    Article  Google Scholar 

  39. Wilson, K. M., I. E. G. Morrison, P. R. Smith, N. Fernandez, and R. J. Cherry. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J. Cell Sci. 109:2101–2109, 1996.

    PubMed  CAS  Google Scholar 

  40. Wit, P. J., J. Noordmans, and H. J. Busscher. Tracking of colloidal particles using microscopic image sequence analysis. Application to particulate microelectrophoresis and particle deposition. Coll. Surf. A 125:85–92, 1997.

    Article  CAS  Google Scholar 

  41. Work, S. S., and D. M. Warshaw. Computer-assisted tracking of actin filament motility. Anal. Biochem. 202:275–285, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Centro di Riferimento Oncologico (C.R.O.-I.R.C.C.S., Aviano, Italy) for supporting A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Canu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machin, M., Santomaso, A., Mazzucato, M. et al. Single Particle Tracking Across Sequences of Microscopical Images: Application to Platelet Adhesion Under Flow. Ann Biomed Eng 34, 833–846 (2006). https://doi.org/10.1007/s10439-006-9086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9086-8

Keywords

Navigation