Skip to main content
Log in

Multiresolution Analysis of Heart Rate Variability as Investigational Tool in Experimental Fetal Cardiac Surgery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2006

Abstract

Multiresolution analysis of heart rate variability derived from aortic blood pressure, acquired before and after (30 and 60 min) experimental fetal cardiac bypass performed on five ewe's fetuses, was used to investigate the physiological response to an invasive clinical approach. Tachograms were implemented and analyzed by wavelet transform in order to verify the existence of a quantitative relationship between arterial blood gases and time series in the very-low (0.021 < f < 0.084 Hz) and low (0.084 < f < 0.337 Hz) frequency band. Multiresolution analysis showed an average decreasing trend from basal condition for all the fetuses investigated in the very-low frequency band, while an opposite trend was highlighted in the low frequency band: this resulting behavior could be related to the temporal evolution of blood gas data. Finally, a slight decrease of sympatho-vagal balance was monitored 30 min after the cardiac bypass was discontinued compared to basal condition. Multiresolution analysis could give more insights on fetal hypoxemia and could also represent a minimally invasive monitoring tool to limit the damage to the fetoplacental unit during experimental fetal cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

REFERENCES

  1. Akin, M. Comparison of wavelet transform and FFT methods in the analysis of EEG signals. J. Med. Syst. 26:241–247, 2002.

    Article  PubMed  CAS  Google Scholar 

  2. Aubert, A. E., D. Ramaekers, F. Beckers, R. Breem, C. Denef, F. Van De Werf, and H. Ector. The analysis of heart rate variability in unstrenaid rats. Validation of method and results. Comp. Methods Prog. Biomed. 60:197–213, 1999.

    Article  CAS  Google Scholar 

  3. Bartoli, F., G. Baselli, and S. Cerutti. AR identification and spectral estimate applied to the R-R interval measurements. Int. J. Biomed. Comput. 16:201–215, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310, 1986.

    PubMed  CAS  Google Scholar 

  5. Bracic Lotric, M., A. Stefanovska, D. Štaier, and V. Urbancic-Royan. Spectral components of heart rate variability determined by wavelet analysis. Physiol. Meas. 21:441–457, 2000.

    Article  Google Scholar 

  6. Carotti, A., F. Emma, S. Picca, E. Iannace, S. B. Albanese, M. Grigioni, F. Meo, M. Sciarra, and R. M. Di Donato. Inflammatory response to cardiac bypass in ewe fetuses: Effects of steroid administration or continuous hemodiafiltration. J. Thorac. Cardiovasc. Surg. 126:1839–1850, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. Cerutti, S., S. Civardi, A. Bianchi, M. G. Signorini, and G. Pardi. Spectral analysis of antepartum heart rate variability. Clin. Phys. Physiol. Meas. 10:27–31, 1989.

    Article  PubMed  Google Scholar 

  8. Ferrazzi, E., G. Pardi, P. L. Setti, M. Rodolfi, S. Civardi, and S. Cerutti. Power spectral analysis of the heart rate of the human fetus at 26 and 36 weeks of gestation. Clin. Phys. Physiol. Meas. 10:57–60, 1989.

    Article  PubMed  Google Scholar 

  9. Grigioni, M., A. Carotti, C. Daniele, G. D’Avenio, U. Morbiducci, E. Iannace, S. B. Albanese, D. Costa, R. Formigari, E. Ferretti, and R. M. Di Donato. Extracorporeal circulation in ewe's fetus: Towards a reliable fetal cardiac surgery protocol. Int. J. Artif. Organs. 23:189–198, 2000.

    PubMed  CAS  Google Scholar 

  10. Kimura, Y., K. Okamura, T. Watanabe, J. Murotsuky, T. Suzuki, M. Yano, and A. Yajima. Power spectral analysis for autonomic influences in heart rate and blood pressure variability in fetal lambs. Am. J. Physiol. 271:H1333–H1339, 1996.

    PubMed  CAS  Google Scholar 

  11. Lafond, J. S., J. C. Fouron, and H. Bard. Cardiovascular status during ketamine anesthesia in the fetal lamb. Biol. Neonate. 52:279–284, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Lindecrantz, K., S. Cerutti, S. Civardi, K. H. Hokegard, H. Lilja, K. G. Rosen, M. G. Signorini, and C. Widmark. Power spectrum analysis of the fetal heart rate during noradrenaline infusion and acute hypoxemia in the chronic fetal lamb preparation. Int. J. Biomed. Comput. 33:199–207, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Malliani, A., M. Pagani, F. Lombardi, and S. Cerutti. Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492, 1991.

    PubMed  CAS  Google Scholar 

  14. Marple, S. L. Jr. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice Hall, 1987.

  15. Metsälä, T. H., A. S. Siimes, K. J. Antila, J. Tuominen, and I. A. Välimäki. Computer analysis of heart rate variation and breathing movements in fetal lambs. Med. Biol. Eng. Comput. 31:221–228, 1993.

    Article  PubMed  Google Scholar 

  16. Metsälä, T., A. Siimes, K. Antila, and I. Välimäki. Association of breathing movements to the variability of heart rate and blood pressure in foetal lambs. Acta Physiol. Scand. 147:213–219, 1993.

    Article  PubMed  Google Scholar 

  17. Pagani, M., F. Lombardi, S. Guazzetti, O. Rimordi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell’Orto, and E. Piccaluga. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Research. 59:178–93, 1986.

    CAS  Google Scholar 

  18. Parry, A. J., E. Petrossian, D. B. McElhinney, V. M. Reddy, and F. L. Hanley. Neutrophil degranulation and complement activation during fetal cardiac bypass. Ann. Thorac. Surg. 70:582–589, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Reddy, V. M., D. B. McElhinney, H. A. Rajasinghe, J. L. Rodriguez, and F. L. Hanley. Cytokine response to fetal cardiac bypass. J. Matern. Fetal. Investig. 8:46–49, 1998.

    PubMed  Google Scholar 

  20. Reddy, V. M., D. B. McElhinney, H. A. Rajasinghe, J. R. Liddicoat, K. Hendricks-Munoz, J. R. Fineman, and F. L. Hanley. Role of the endothelium in placental dysfunction after fetal cardiac bypass. J. Thorac. Cardiovasc. Surg. 117:343–351, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Reddy, V. M., J. R. Liddicoat, J. R. Klein, D. B. McElhinney, R. K. Wampler, and F. L. Hanley. Fetal cardiac bypass using an in-line axial flow pump to minimize extracorporeal surface and avoid priming volume. Ann. Thorac. Surg. 62:393–400, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Salamalekis, E., P. Thomopolous, D. Giannaris, I. Salloum, G. Vasios, A. Prentza, and D. Koutsourosis. Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks. BJOG 109:1137–1142, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Sheng, Y. “Wavelet transform.” In: The Transforms and Applications Handbook, edited by A. D. Poularikas. Florida, USA: CRC Press, 1996, pp. 747–827.

    Google Scholar 

  24. Suzuki, T., K. Okamura, Y. Kimura, T. Watanabe, N. Yaegashi, J. Murotsuki, S. Uehara, and A. Yajima. Power spectral analysis of R-R interval variability before and during the sinusoidal heart rate pattern in fetal lambs. Am. J. Obstet. Gynecol. 182:1227–1232, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065, 1996.

    Google Scholar 

  26. Turkoglu, I., A. Aislan, and E. Iilkay. An expert system for diagnosis of the heart valve diseases. Expert Syst. Appl. 23:229–236, 2002.

    Article  Google Scholar 

  27. Wiklund, U., M. Akay, S. Morrison, and U. Niklasson. Wavelet decomposition of cardiovascular signals for baroreceptor function tests in pigs. IEEE Trans. Biomed. Eng. 49:651–661, 2002.

    Article  PubMed  Google Scholar 

  28. Yu Z. Y., E. R. Lumbers, K. J. Gibson, and A. D. Stevens. Affects of hypoxaemia on fetal heart rate, variability and cardiac rhythm. Clin. Exp. Pharmacol. Physiol. 25:577–584, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Grigioni.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-006-9118-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigioni, M., Carotti, A., Del Gaudio, C. et al. Multiresolution Analysis of Heart Rate Variability as Investigational Tool in Experimental Fetal Cardiac Surgery. Ann Biomed Eng 34, 799–809 (2006). https://doi.org/10.1007/s10439-006-9084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9084-x

Keywords

Navigation