Skip to main content
Log in

Numerical Simulation of Cell Motion in Tube Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A theoretical model is presented for describing the motion of a deformable cell encapsulating a Newtonian fluid and enclosed by an elastic membrane in tube flow. In the mathematical formulation, the interior and exterior hydrodynamics are coupled with the membrane mechanics by means of surface equilibrium equations, and the problem is formulated as a system of integral equations for the interfacial velocity, the disturbance tube-wall traction, and the pressure difference across the two ends to the tube due to the presence of the cell. Numerical solutions obtained by a boundary-element method are presented for flow in a cylindrical tube with a circular cross-section, cytoplasm viscosity equal to the ambient fluid viscosity, and cells positioned sufficiently far from the tube wall so that strong lubrication forces do not arise. In the numerical simulations, cells with spherical, oblate ellipsoidal, and biconcave unstressed shapes enclosed by membranes that obey a neo-Hookean constitutive equation are considered. Spherical cells are found to slowly migrate toward the tube centerline at a rate that depends on the mean flow velocity, whereas oblate and biconcave cells are found to develop parachute and slipper-like shapes, respectively, from axisymmetric and more general initial orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner, B. Pressure drop due to the motion of neutrally buoyant particles in duct flows J. Fluid Mech. 43: 4641-660, 1970.

    MathSciNet  Google Scholar 

  2. Coulliette, C., and C. Pozrikidis. Motion of liquid drops through tubes J. Fluid Mech. 358: 1-28, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. Diaz, A., and D. BarthéBiesel. Entrance of a bioartificial capsule in a pore Comput. Mod. Eng. Sc. 3: 321-337, 2002.

    MATH  Google Scholar 

  4. Evans, E. A., and Y. C. Fung. Improved measurements of the erythrocyte geometry Microvasc. Res. 4: 335-347, 1972.

    Article  Google Scholar 

  5. Goldsmith, H. L., and S. G. Mason. The microrheology of dispersions. Rheology, Theory and Applications, 4:85–250 (1967).

    Google Scholar 

  6. Greenstein, T., and J. Happel. Theoretical study of the slow motion of a sphere and a fluid in a cylindrical tube. J. Fluid Mech. 34:705–710, 1968.

    MATH  Google Scholar 

  7. Hsu, R., and T. W. Secomb. Motion of nonaxisymmetric red blood cells in cylindrical capillaries J. Biomech. Eng. 111: 147-151, 1989.

    Article  Google Scholar 

  8. Kennedy, M., C. Pozrikidis, and R. Skalak. Motion and deformation of liquid drops, and the rheology of dilute emulsions in shear flow. Computers & Fluids 23: 251-278, 1994.

    MATH  Google Scholar 

  9. Leyrat-Maurin, A., and D. Barthés-Biesel. Motion of a deformable capsule through a hyperbolic constriction. J. Fluid Mech. 279:135–163, 1994.

    MATH  Google Scholar 

  10. Magnaudet, J., S. Takagi, and D. Legendre. Drag, deformation and lateral migration of a buoyant drop moving near a wall J. Fluid Mech. 476: 115-157, 2003.

    Article  MATH  Google Scholar 

  11. Özkaya, N. Viscous Flow of Particles in Tubes: Lubrication Theory and Finite Element Models. Doctoral Dissertation, Columbia University, New York, 1986.

    Google Scholar 

  12. Pozrikidis, C. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge: Cambridge University Press, 1992.

    MATH  Google Scholar 

  13. Pozrikidis, C. Introduction to Theoretical and Computational Fluid Dynamics. New York: Oxford University Press, 1997.

    MATH  Google Scholar 

  14. Pozrikidis, C. A Practical Guide to Boundary-Element Methods with the Software Library BEMLIB. Boca Raton: Chapman & HALL/CRC, 2002.

    MATH  Google Scholar 

  15. Pozrikidis, C. Numerical simulation of the flow-induced deformation of red-blood cells Ann. Biomed. Eng. 31: 1-12, 2003.

    Article  Google Scholar 

  16. Pozrikidis, C. Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids Accepted.

  17. Pozrikidis, C. Computation of Stokes flow due to particle motion in a tube. J. Eng. Math. Submitted.

  18. Pries, A. R., D. Neuhaus, and P. Gaetgens. Blood viscosity in tube flow: Dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.

    Google Scholar 

  19. Quéguiner, C., and D. Barthés-Biesel. Axisymmetric motion of capsules through cylindrical channels. J. Fluid Mech. 348:349–376, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. Secomb, T. W. Flow-dependent rheological properties of blood in capillaries Microvasc. Res. 34: 46-58, 1987

    Article  Google Scholar 

  21. Secomb, T. W. Red blood cell mechanics and capillary blood rheology. Cell Biophys. 18: 231-251, 1992.

    Google Scholar 

  22. Secomb, T. W. Mechanics of blood flow in the microcirculation. In: Biological Fluid Dynamics, edited by C. P. Ellington and T. J. Pedley. Cambridge: Cambridge University Press, 1995, pp. 305–321.

    Google Scholar 

  23. Secomb, T. W. Mechanics of red blood cells and blood flow in narrow tubes. In: Modeling and Simulation of Capsules and Biological Cells, edited by C. Pozrikidis. Boca Raton: Chapman & Hall/CRC, 2003.

    Google Scholar 

  24. Secomb, T. W., and J. F. Gross. Flow of red blood cells in narrow capillaries: Role of membrane tension Int. J. Microcirc.: Clin. Exp. 2: 229-240, 1983

    Google Scholar 

  25. Secomb, T. W., and R. Hsu. Analysis of red blood cell motion through cylindrical micropores: Effects of cell properties Biophys. J. 171: 1095-1101, 1996.

    Google Scholar 

  26. Secomb, T. W., R. Hsu, and A. R. Pries. Motion of red blood cells in a capillary with an endothelial surface layer: Effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281:H629–H636, 2001.

    Google Scholar 

  27. Secomb, T. W., R. Skalak, N. Özkaya, and J. F. Gross. Flow of axisymmetric red blood cells in narrow capillaries J. Fluid Mech. 163: 405-423, 1986.

    Google Scholar 

  28. Skalak, R., and P. I. Branemark. Deformation of red blood cells in capillaries Science 164: 283-287, 1969.

    Google Scholar 

  29. Skalak, R., N. Özkaya, and T. C. Skalak. Biofluid mechanics Annu. Rev. Fluid Mech. 21: 167-204, 1989.

    Article  Google Scholar 

  30. Skalak. R., and H. Tözeren. Flow mechanics in the microcirculation. In: Mathematics of Microcirculation Phenomena, edited by J. F. Gross and A. Popel. New York: Raven Press, 1980, 17-40.

    Google Scholar 

  31. Skalak, R., A. Tözeren, P. R. Zarda, and S. Chien. Strain energy function of red blood cell membranes Biophys. J. 13: 245-264, 1973.

    Article  Google Scholar 

  32. Zarda, P. R., S. Chien, and R. Skalak,. Interaction of viscous incompressible fluid with an elastic body. In: Computational Methods for Fluid-Solid Interaction Problems, edited by T. Belytschko and T. L. Geers, New York: American Society of Mechanical Engineers, 1977, 65–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pozrikidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozrikidis, C. Numerical Simulation of Cell Motion in Tube Flow. Ann Biomed Eng 33, 165–178 (2005). https://doi.org/10.1007/s10439-005-8975-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8975-6

Keywords

Navigation