Skip to main content

Advertisement

Log in

Improving Hollow Fiber Dialyzer Efficiency with a Recirculating Dialysate System II: Comparison Against Two-Chamber Dialysis Systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The theoretical basis of the nonregenerated recirculating dialysate system (RDS) was derived in Part I of this work [M. Prado, L. M. Roa, A. Palma, and J. A. Milán, Ann. Biomed. Eng. (2005)]. This system pursues the maximization of the clearance of hollow fiber dialyzers whose performance is controlled by diffusion, as occurred in standard hemodialysis. In this second part we perform a comparison by digital simulation of the RDS against three well-known two-chamber dialysis systems. As a major outcome, the efficiency of the RDS increased by a factor of five–eight with respect to the efficiency of a single dialyzer operating with a number of transfer units equal to 0.1, that is when the diffusive mass-transfer of the dialyzer is exhausted. Present low-flux dialyzers do not take advantage of the full potential of this technique, but the functional domain where high-flux and high-area dialyzers operate could be more suitable to exploit this technique. We conclude that RDS can be a competitive efficient technique for optimizing the dialysis efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R., and R. E. Cronin. Heterogeneity in gentamicin clearance between high-efficiency hemodialyzers. Am. J. Kidney Dis. 23(1):47–51, 1994.

    Google Scholar 

  2. Allen, R., T. H. Frost, and N. A. Hoenich. The influence of the dialysate flow rate on hollow fiber hemodialyzer performance. Artif. Organs 19(11):1176–1180, 1995.

    Google Scholar 

  3. Brendolan, A., C. Ronco, C. Crepaldi, L. Bragantini, M. Milan, F. Gastaldon, and G. La Greca. Double pass dialysis: A new method of renal replacement in patients with malfunctioning vascular access. Int. J. Artif. Organs 17(7):379–384, 1994.

    Google Scholar 

  4. Charra, B., T. A. Depner, R. Vanholder, A. M. Dhondt, W. van Biesen, F. A. Gotch, and F. G. Casino. Is kt/v urea a satisfactory measure for dosing the newer dialysis regimens? Semin. Dial. 14(1):8–9, 2001.

    Google Scholar 

  5. Clark, W. R., R. J. Hamburger, and M. J. Lysaght. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 56(6):2005–2015, 1999.

    Article  Google Scholar 

  6. Clark, W. R. Quantitative characterization of hemodialyzer solute and water transport. Semin. Dial. 14(1): 32–36, 2001.

    Article  MATH  Google Scholar 

  7. Daugirdas, J. T., P. G. Blake, and T. S. Ing. Handbook of dialysis, 3ed. Philadelphia: Lippincot Williams & Wilkins, 2001.

  8. de Francisco, A. L. Secondary hyperparathyroidism: Review of the disease and its treatment. Clin. Ther. 26(12):1976–1993, 2004.

    Google Scholar 

  9. Dennison, H. A. Improving adequacy of dialysis: Using in-series dialyzers. ANNA J. 26:610–612, 1999.

    Google Scholar 

  10. ERA-EDTA Registry: ERA-EDTA Registry 2002 Annual Report, Academic Medical Center, Amsterdam, The Netherlands, May 2004.

  11. Friedman, M. H. Principles and Models of Biological Transport. Berlin: Springer-Verlag, 1986.

    Google Scholar 

  12. Fritz, B. A., S. Doss, L. M. McCann, and E. M. Wrone. A comparison of dual dialyzers in parallel and series to improve urea clearance in large hemodialysis patients. Am. J. Kidney Dis. 41(5):1008–1015, 2003.

    Google Scholar 

  13. Galach, M., A. Ciechanowska, S. Sabalinska, J. Waniewski, J. Wójcicki, and A. Werynski. Impact of convective transport on dialyzer clearance. J. Artif. Organs 6:42–48, 2003.

    Article  Google Scholar 

  14. Gotch, F. A., J. A. Sargent, and M. L. Keen. Whither goest Kt/V? Kidney Int. 58(Suppl. 76):S3–S18, 2000.

    Google Scholar 

  15. Hauk, M., M. K. Kuhlmann, W. Riegel, and H. Kohler. In vivo effects of dialysate flow rate on Kt/V in maintenance hemodialysis patients. Am. J. Kidney Dis. 35(1):105–111, 2000.

    Google Scholar 

  16. Jaffrin, M. Y. Convective mass transfer in hemodialysis. Artif. Organs 19(11):1162–1171, 1995.

    Google Scholar 

  17. Ledebo, I. Principles and practice of hemofiltration and hemodiafiltration. Artif. Organs 22(1):20–25, 1998. [Gambro Group Renal Care, Lund, Sweden].

  18. Leon, J. B., and A. R. Sehgal. Identifying patients at risk for hemodialysis underprescription. Am. J. Nephrol. 21(3):200–207, 2001.

    Article  Google Scholar 

  19. Leypoldt, J. K., and A. K. Cheung. Effect of low dialysate flow rate on hemodialyzer mass transfer area coefficients for urea and creatinine. Home Hemodial. Int. 3:51–54, 1999.

    Google Scholar 

  20. Leypoldt, J. K., and A. K. Cheung. Increases in mass transfer-area coefficients and urea kt/v with increasing dialysate flow rate are greater for high-flux dialyzers. Am. J. Kidney Dis. 38(3):575–579, 2001.

    Google Scholar 

  21. Leypoldt, J. K., A. K. Cheung, L. Y. Agodoa, J. T. Daugirdas, T. Greene, and P. R. Keshaviah. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The hemodialysis (hemo) study. Kidney Int. 51(6):2013–2017, 1997.

    Google Scholar 

  22. Leypoldt, J. K., A. K. Cheung, and R. B. Deeter. Effect of hemodialyzer reuse: Dissociation between clearances of small and large solutes. Am. J. Kidney Dis. 32(2):295–301, 1998.

    Google Scholar 

  23. Lowrie, E. G. The normalized treatment ratio (kt/v) is not the best dialysis dose parameter. Blood Purif. 18(4):286–294, 2000.

    Article  Google Scholar 

  24. Michaels, A. S. Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans. Am. Soc. Artif. Int. Organs 12:387–392, 1966.

    Google Scholar 

  25. Morti, S. M., and A. L. Zydney. Protein–membrane interactions during hemodialysis: Effects on solute transport. Asaio J. 44(4):319–326, 1998.

    Google Scholar 

  26. Ouseph, R., and R. A. Ward. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Am. J. Kidney Dis. 37(2):316–320, 2001.

    Google Scholar 

  27. Powers, K. M., M. J. Wilkowski, A. W. Helmandollar, K. G. Koenig, and W. K. Bolton. Improved urea reduction ratio and Kt/V in large hemodialysis patients using two dialyzers in parallel. Am. J. Kidney Dis. 35(2):266–274, 2000.

    Google Scholar 

  28. Prado, M., L. M. Roa, A. Palma, and J. A. Milán. Improving hollow fiber dialyzer efficiency with a recirculating dialysate system I: Theory and applicability. Ann. Biomed. Eng. 33(5):643–656, 2005.

    Article  Google Scholar 

  29. Roa, L. M., and M. Prado. The role of urea kinetic modeling in assessing the adequacy of dialysis. Crit. Rev. Biomed. Eng. 32(5–6):461–539, 2004.

    Google Scholar 

  30. Roa, L., and M. Prado. Simulation languages (in press), in Wiley Encyclopedia of Biomedical Engineering, edited by Metin Akay, John Wiley and Sons, Inc., 2005.

  31. Ronco, C., M. Feriani, A. Brendolan, S. Chiaramonte, M. Milan, R. Dell Aquila, M. Scabardi, L. Bragantini, P. Conz, and G. La Greca. Paired filtration dialysis: Studies on efficiency, flow dynamics, and hydraulic properties of the system. Blood Purif. 8(3):126–140, 1990.

    Google Scholar 

  32. Ronco, C., G. Orlandini, A. Brendolan, A. Lupi, and G. La Greca. Enhancement of convective transport by internal filtration in a modified experimental hemodialyzer: Technical note. Kidney Int. 54(3):979–985, 1998.

    Article  Google Scholar 

  33. Scott, M. K., B. A. Mueller, and W. R. Clark. Vancomycin mass transfer characteristics of high-flux cellulosic dialysers. Nephrol. Dial. Transplant. 12(12):2647–2653, 1997.

    Google Scholar 

  34. Splendiani, G., D. Zazzaro, T. Tullio, R. Colombo, M. Beciani, and A. Violante. Bidialysis: A new technique. Int. J. Artif. Organs 24(2):70–78, 2001.

    Google Scholar 

  35. Sridhar, N. R., K. Ferrand, D. Reger, P. Hayes, L. Pinnavaia, D. Butts, R. Kohli, and G. Papandenatos. Urea kinetics with dialyzer reuse—a prospective study. Am. J. Nephrol. 19(6):668–673, 1999.

    Article  Google Scholar 

  36. Teruel, J. L., M. Fernández Lucas, J. R. Rodríguez, J. López Sánchez, R. Marcén, M. Rivera, and F. Liañoy J. Ortuño. Relación entre la dialisancia iónica y el aclaramiento de urea. Nefrología 20(2), 2000.

  37. U.S. Renal Data System, USRDS, Annual data report: Atlas of end-stage renal disease in the United States. National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 2003.

  38. Waniewski, J., P. Lucjanek, and A. Werynski. Alternative descriptions of combined diffusive and convective mass transport in hemodialyzer. Artif. Organs 17(1): 3–7, 1993.

    Google Scholar 

  39. Waniewski, J., A. Werynski, P. Ahrenholz, P. Lucjanek, W. Judycki, and G. Esther. Theoretical basis and experimental verification of the impact of ultrafiltration on dialyzer clearance. Artif. Organs 15(2):70–77, 1991.

    Google Scholar 

  40. Ward, R. A. Blood flow rate: An important determinant of urea clearance and delivered Kt/V. Adv. Ren. Replace. Ther. 6(1):75–79, 1999.

    Google Scholar 

  41. Werynski, A., and J. Waniewski. Theoretical description of mass transport in medical membrane devices. Artif. Organs 19(5):420–427, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Prado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prado, M., Roa, L.M., Palma, A. et al. Improving Hollow Fiber Dialyzer Efficiency with a Recirculating Dialysate System II: Comparison Against Two-Chamber Dialysis Systems. Ann Biomed Eng 33, 1595–1606 (2005). https://doi.org/10.1007/s10439-005-6884-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-6884-3

Key Words

Navigation