Skip to main content
Log in

Improving Hollow Fiber Dialyzer Efficiency with a Recirculating Dialysate System I: Theory and Applicability

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mathematical theory that underlies a novel non-regenerated recirculating dialysate system (RDS) for improving diffusive clearance in hemodialyzers is presented. The theory states the conditions that hemodialyzers must meet to be suitable in RDS optimization. We have verified the applicability of the RDS for several Cuprophan and polysulfone (PS) commercial dialyzers, showing that PS (synthetic) membranes achieve the highest increments of diffusive clearance. A numerical simulation analysis over more general conditions defined by the dimensionless groups of the system demonstrated that the highest diffusive clearance improvements are achieved in dialyzers operating with a low value of the diffusive mass-transfer area/blood flow rate ratio. This study has provided the base for the assessment of the performance of the RDS as compared to several high-efficiency systems, presented in Part II of this work [M. Prado, L. M. Roa, A. Palma, and J. A. Milán, Ann. Biomed. Eng. (2004) submitted].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, R., T. H. Frost, and N. A. Hoenich. The influence of the dialysate flow rate on hollow fiber hemodialyzer performance. Artif. Organs 19(11):1176–1180, 1995.

    CAS  PubMed  Google Scholar 

  2. Brendolan, A., C. Ronco, C. Crepaldi, L. Bragantini, M. Milan, F. Gastaldon, and G. La Greca. Double pass dialysis: A new method of renal replacement in patients with malfunctioning vascular access. Int. J. Artif. Organs 17(7):379–84, 1994.

    CAS  PubMed  Google Scholar 

  3. Britton, N. F. A new method for mass transport problems with an application to haemofilters. SIAM J. Appl. Math. 52(3):630–650, 1992.

    Article  Google Scholar 

  4. Buckingham, E. On physically similar systems: Illustration of the use of dimensional equations. Phys. Rev. 4(4):345–376, 1914.

    Article  Google Scholar 

  5. Clark, W. R., R. J. Hamburger, and M. J. Lysaght. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 56(6):2005–215, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Clark, W. R., and J. H. Shinaberger. Clinical evaluation of a new high efficiency hemodialyzer: Polysynthane. Asaio J. 46(3):288–292, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Daugirdas, J. T., P. G. Blake, and T. S. Ing. Handbook of Dialysis. Lippincot Williams & Wilkins, 2001.

  8. Elangovan, L., C. S. Shinaberger, J. A. Kraut, and J. H. Shinaberger. Hemo equilibrated Kt/V goals are difficult to achieve in large male patients. Asaio J. 47(3):235–239, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Frank, A., G. G. Lipscomb, and M. Dennis. Visualization of concentration fields in hemodialyzers by computed tomography. J. Membr. Sci. 175(2):239–251, 2000.

    Article  CAS  Google Scholar 

  10. Gastaldon, F., A. Brendolan, C. Crepaldi, P. Frisone, S. Zamboni, V. d’Intini, S. Poulin, R. Hector, A. Granziero, K. Martins, R. Gellert, P. Inguaggiato, and C. Ronco. Effects of novel manufacturing technology on blood and dialysate flow distribution in a new low flux ‘‘alpha polysulfone’’ hemodialyzer. Int. J. Artif Organs 26(2):105–112, 2003.

    CAS  PubMed  Google Scholar 

  11. Gotch, F. A., J. A. Sargent, and M. L. Keen. Whither goest Kt/V? Kidney Int. 58(Suppl 76):S3–S18, 2000.

    Google Scholar 

  12. Hauk, M., M. K. Kuhlmann, W. Riegel, and H. Kohler. In vivo effects of dialysate flow rate on Kt/V in maintenance hemodialysis patients. Am. J. Kidney Dis. 35(1):105–111, 2000.

    CAS  PubMed  Google Scholar 

  13. Kar, P. M., K. Kellner, T. S. Ing, and D. J. Leehey. Combined high-efficiency hemodialysis and charcoal hemoperfusion in severe n-acetylprocainamide intoxication. Am. J. Kidney Dis. 20(4):403–406, 1992.

    CAS  PubMed  Google Scholar 

  14. Legallais, C., G. Catapano, B. von Harten, and U. Baurmeister. A theoretical model to predict the in vitro performance of hemodiafilters. J. Membr. Sci. 168(1–2):3–15, 2000.

    Article  CAS  Google Scholar 

  15. Leon, J. B., and A. R. Sehgal. Identifying patients at risk for hemodialysis underprescription. Am. J. Nephrol. 21(3):200–207, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Leypoldt, J. K., and A. K. Cheung. Increases in mass transfer-area coefficients and urea Kt/V with increasing dialysate flow rate are greater for high-flux dialyzers. Am. J. Kidney Dis. 38(3):575–579, 2001.

    CAS  PubMed  Google Scholar 

  17. Leypoldt, J. K., A. K. Cheung, L. Y. Agodoa, J. T. Daugirdas, T. Greene, and P. R. Keshaviah. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates: The hemodialysis (hemo) study. Kidney Int. 51(6):2013–2017, 1997.

    CAS  PubMed  Google Scholar 

  18. Leypoldt, J. K., A. K. Cheung, and R. B. Deeter. Effect of hemodialyzer reuse: Dissociation between clearances of small and large solutes. Am. J. Kidney Dis. 32(2):295–301, 1998.

    CAS  PubMed  Google Scholar 

  19. Leypoldt, J. K., and A. K. Cheung. Effect of low dialysate flow rate on hemodialyzer mass transfer area coefficients for urea and creatinine. Home Hemodial. Int. 3:51–54, 1999.

    Google Scholar 

  20. Mac-Kay, M. V., I. P. Fernandez, J. Herrera Carranza, and J. Sancez Burson. An in vitro study of the influence of a drug’s molecular weight on its overall (clt), diffusive (cld) and convective (clc) clearance through dialysers. Biopharmaceutics Drug Disposition 16(1):23–35, 1995.

    CAS  PubMed  Google Scholar 

  21. Mandolfo, S., F. Malberti, E. Imbasciati, P. Cogliati, and A. Gauly. Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers. Int. J. Artif. Organs 26(2):113–120, 2003.

    CAS  PubMed  Google Scholar 

  22. Michaels, A. S. Operating parameters and performance criteria for hemodialyzers and other membrane—separation devices. Trans. Am. Soc. Artif. Int. Organs 12:387–392, 1966.

    CAS  Google Scholar 

  23. Morti, S. M., and A. L. Zydney. Protein-membrane interactions during hemodialysis: Effects on solute transport. Asaio J. 44(4):319–326, 1998.

    CAS  PubMed  Google Scholar 

  24. Ouseph, R., and R. A. Ward. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Am. J. Kidney Dis. 37(2):316–320, 2001.

    CAS  PubMed  Google Scholar 

  25. Paris, J., P. Guichardon, and F. Charbit. Transport phenomena in ultrafiltration: A new two-dimensional model compared with classical models. J. Membr. Sci. 207(1):43–58, 2002.

    Article  CAS  Google Scholar 

  26. Prado, M., L. Roa, J. Reina-Tosina, A. Palma, and J. A. Milán. Virtual center for renal support: Technological approach to patient physiological image. IEEE Trans. Biomed. Eng. 49(12):1420–1430, 2002.

    Article  PubMed  Google Scholar 

  27. Prado, M., L. Roa, J. Reina-Tosina, A. Palma, and J. A. Milán. Renal telehealthcare system based on a patient physiological image: A novel hybrid approach in telemedicine. Telemed. J. e-Health 9(2):149–165, 2003.

    Article  PubMed  Google Scholar 

  28. Prado, M., Laura M. Roa, A. Palma, and J. A. Milán. Improving hollow fiber dialyzer efficiency with a recirculating dialysate system {II}: Comparision against two chamber dialysis systems. (submitted). Ann. Biomed. Eng. 2004.

  29. Sagiv, A. Theoretical formulation of the diffusion through a slab-theory validation. J. Membr. Sci. 199(1–2):125–134, 2002.

    Article  CAS  Google Scholar 

  30. Schepartz, B. Dimensional Analysis in Biomedical Sciences. Thomas, Springfield, IL, 1980.

    Google Scholar 

  31. Scott, M. K., B. A. Mueller, and W. R. Clark. Vancomycin mass transfer characteristics of high-flux cellulosic dialysers. Nephrol. Dial. Transplant. 12(12):2647–2653, 1997.

    Article  CAS  PubMed  Google Scholar 

  32. Scott, M. K., B. A. Mueller, K. M. Sowinski, and W. R. Clark. Dialyzer-dependent changes in solute and water permeability with bleach reprocessing. Am. J. Kidney Dis. 33(1):87–96, 1999.

    CAS  PubMed  Google Scholar 

  33. Sridhar, N. R., K. Ferrand, D. Reger, P. Hayes, L. Pinnavaia, D. Butts, R. Kohli, and G. Papandenatos. Urea kinetics with dialyzer reuse—a prospective study. Am. J. Nephrol. 19(6):668–673, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Stiller, S., and H. Mann. A model of solute transport through the dialyzer membrane in hemodiafiltration. Semin. Dial. 12(Suppl 1):S76–S80, 1999.

    Article  Google Scholar 

  35. Teruel, J. L., M. Fernández Lucas, J. R. Rodríguez, J. López Sánchez, R. Marcén, M. Rivera, and F. Liañoy J. Ortuño. [relationship between ionic dialysance and urea clearance] relación entre la dialisancia iónica y el aclaramiento de urea. Nefrología 20(2), 2000.

  36. Ward, R. A., Blood flow rate: An important determinant of urea clearance and delivered Kt/V. Adv. Ren. Replace. Ther. 6(1):75–79, 1999.

    CAS  PubMed  Google Scholar 

  37. Werynski, A., and J. Waniewski. Theoretical description of mass transport in medical membrane devices. Artif. Organs 19(5):420–427, 1995.

    CAS  PubMed  Google Scholar 

  38. Wupper, A., F. Dellanna, C. A. Baldamus, and D. Woermann. Local transport processes in high-flux hollow fiber dialyzers. J. Membr. Sci. 131(1–2):181–193, 1997.

    Google Scholar 

  39. Wupper, A., D. Woermann, F. Dellanna, and C. A. Baldamus. Retrofiltration rates in high-flux hollow fiber hemodialyzers: Analysis of clinical data. J. Membr. Sci. 121(1):109–116, 1996.

    Article  Google Scholar 

  40. Yeh, H. M., T. W. Cheng, and Y. J. Chen. Analysis of dialysis coupled with ultrafiltration in cross-flow membrane modules. J. Membr. Sci. 134(2):151–162, 1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Prado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prado, M., Roa, L.M., Palma, A. et al. Improving Hollow Fiber Dialyzer Efficiency with a Recirculating Dialysate System I: Theory and Applicability. Ann Biomed Eng 33, 642–655 (2005). https://doi.org/10.1007/s10439-005-4389-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-4389-8

Keywords

Navigation