Skip to main content
Log in

Topology optimization of continuum structures considering damage based on independent continuous mapping method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Continuum topology optimization usually produces results similar to a skeleton structure. In addition, material utilization in the optimized structure is greatly improved compared with the original structure. On the other hand, the redundancy of the structure is greatly reduced due to the removed material. Partial local failure in the optimized structure makes it more difficult for the entire structure to meet strength/stiffness requirements. Using the independent continuous mapping (ICM) method, with minimal weight as the objective and both stress and displacement as the respective constraints, continuum topology optimization models which also consider damage can be employed. A dual-sequence quadratic programming (DSQP) algorithm was used in this work to solve such topology optimization models. Numerical examples confirmed the effectiveness and feasibility of the models. The results indicated that both good load path and weight reduction can be obtained. In addition, compared with the structure obtained using conventional topology optimization, redundancy is greatly improved, and the strength/stiffness requirements for the structure can be satisfied for each damage scenario. Furthermore, the results indicate that the strength/stiffness of the structure, after topology optimization, is only slightly sensitive to local damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Sui, Y.K., Ye, H.L.: Continuum Topology Optimization Methods ICM. Science Press, Beijing (2013). (in Chinese)

    Google Scholar 

  2. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mlejnek, H.P.: Some aspects of the genesis of structures. Struct. Optim. 5, 64–69 (1992)

    Article  Google Scholar 

  4. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  5. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed-algorithms based on Hamilton–Jacobi formulations. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sui, Y.K., Peng, X.R.: The improvement for the ICM method of structural topology optimization. Chin. J. Theor. Appl. Mech. 37, 190–198 (2005). (in Chinese)

    Google Scholar 

  8. Guo, X.: Doing topology optimization explicitly and geometrically: a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)

    Article  Google Scholar 

  9. Zhang, W., Chen, J., Zhu, X.: Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dan, M., Curley, J.: Effects of damage and redundancy on structural reliability. J. Struct. Eng. ASCE 113, 1533–1549 (1987)

    Article  Google Scholar 

  11. Arora, J., Haskell, D., Govil, A.: Optimal design of large structures for damage tolerance. AIAA J. 18, 563–570 (1980)

    Article  Google Scholar 

  12. Feng, Y., Moses, F.: Optimum design, redundancy and reliability of structural systems. Comput. Struct. 24, 239–251 (1986)

    Article  Google Scholar 

  13. Marhadi, K., Venkataraman, S., Wong, S.: Load redistribution mechanism in damage tolerant and redundant truss structure. Struct. Multidiscip. Optim. 44, 213–233 (2011)

    Article  Google Scholar 

  14. Marhadi, K., Venkataraman, S.: Surrogate measures to optimize structures for robust and predictable progressive failure. Struct. Multidiscip. Optim. 39, 245–261 (2009)

    Article  Google Scholar 

  15. Jansen, M., Lombaert, G., Schevenels, M., et al.: Topology optimization of fail-safe structures using a simplified local damage model. Struct. Multidiscip. Optim. 49, 657–666 (2014)

    Article  MathSciNet  Google Scholar 

  16. Zhou, M., Fleury, R.: Fail-safe topology optimization. Struct. Multidiscip. Optim. 54, 1–19 (2016)

    Article  Google Scholar 

  17. Li, L., Zhang, G., Khandelwal, K.: Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Struct. Multidiscip. Optim. 58, 1589–1618 (2018)

    Article  MathSciNet  Google Scholar 

  18. Liu, J., Wen, G.: Continuum topology optimization considering uncertainties in load locations based on the cloud model. Eng. Optim. 50, 1041–1060 (2017)

    Article  Google Scholar 

  19. Liu, J., Wen, G., Qing, Q., et al.: Robust topology optimization for continuum structures with random loads. Eng. Comput. 35, 710–732 (2018)

    Article  Google Scholar 

  20. Wang, J., Cheng, G.D.: Optimal topology design of thin plate with stress constraints. Acta Mech. Solida Sin. 18, 317–322 (1997). (in Chinese)

    Google Scholar 

  21. Cheng, G.D., Zhang, D.X.: Topological optimization of plane elastic continuum with stress constraints. J. Dalian Univ. Technol. 35, 1–9 (1995). (in Chinese)

    MATH  Google Scholar 

  22. Guan, H., Steven, G., Xie, Y.: Evolutionary structural optimization incorporating tension and compression materials. Adv. Struct. Eng. 2, 273–288 (1999)

    Article  Google Scholar 

  23. Sui, Y.K., Ye, H.L., Peng, X.R., et al.: The ICM method for continuum structural topology optimization with condensation of stress constraints. Chin. J. Theor. Appl. Mech. 39, 554–563 (2007). (in Chinese)

    Google Scholar 

  24. Zhang, W., Li, D., Zhou, J., et al.: A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput. Methods Appl. Mech. Eng. 334, 381–413 (2018)

    Article  MathSciNet  Google Scholar 

  25. Yang, D., Liu, H., Zhang, W., et al.: Stress-constrained topology optimization based on maximum stress measures. Comput. Struct. 198, 23–39 (2018)

    Article  Google Scholar 

  26. Sui, Y.K., Yang, D.Q., Wang, B.: Topological optimization of continuum structure with stress and displacement constraints under multiple loading cases. Chin. J. Theor. Appl. Mech. 32, 179–189 (2000). (in Chinese)

    MathSciNet  Google Scholar 

  27. Zhu, R., Sui, Y.K.: Topological optimization of plate and shell-like structures with displacement constraints under multi-state loadings based on ICM method. Chin. J. Solid Mech. 33, 81–90 (2012). (in Chinese)

    Google Scholar 

  28. Rong, J.H., Xing, X.J., Deng, G.: A structural topological optimization method with variable displacement constraint limits. Chin. J. Theor. Appl. Mech. 41, 431–439 (2009). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant 11072009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazheng Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Guo, Y., Chen, Z. et al. Topology optimization of continuum structures considering damage based on independent continuous mapping method. Acta Mech. Sin. 35, 433–444 (2019). https://doi.org/10.1007/s10409-018-0807-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0807-7

Keywords

Navigation