Skip to main content
Log in

Thermodynamic and rate variational formulation of models for inhomogeneous gradient materials with microstructure and application to phase field modeling

  • RESEARCH PAPER
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this work, thermodynamic models for the energetics and kinetics of inhomogeneous gradient materials with microstructure are formulated in the context of continuum thermodynamics and material theory. For simplicity, attention is restricted to isothermal conditions. The materials of interest here are characterized by (1) first- and second-order gradients of the deformation field and (2) a kinematic microstructure field and its gradient (e.g., in the sense of director, micromorphic or Cosserat microstructure). Material inhomogeneity takes the form of multiple phases and chemical constituents, modeled here with the help of corresponding phase fields. Invariance requirements together with the dissipation principle result in the reduced model field and constitutive relations. Special cases of these include the well-known Cahn–Hilliard and Ginzburg–Landau relations. In the last part of the work, initial boundary value problems for this class of materials are formulated with the help of rate variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1965)

    Google Scholar 

  2. Noll, W.: Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Ration. Mech. Anal. 52, 62–92 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    MATH  Google Scholar 

  4. Khachaturyan, A.G.: Theory of Structural Transformations in Solids. Wiley, Hoboken (1983)

    Google Scholar 

  5. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Leiden (1987)

    Book  Google Scholar 

  6. Suquet, P.: Continuum Micromechanics. CISM, vol. 377. Springer, Berlin (1997)

    Book  Google Scholar 

  7. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1999)

    Google Scholar 

  8. Torquato, S.: Random Heterogeneous Materials, Springer Series on Interdisciplinary Applied Mathematics 16. Springer, Berlin (2002)

    Book  Google Scholar 

  9. Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  10. Böhlke, T.: Application of the maximum entropy method in texture analysis. Comput. Mater. Sci. 32, 276–283 (2005)

    Article  Google Scholar 

  11. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman Hall, London (1993)

    Book  MATH  Google Scholar 

  12. Gurtin, M.E.: Configurational Mechanics as Basic Concepts of Continuum Physics. Springer, Berlin (2000)

    Google Scholar 

  13. Chen, L.-Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  14. Emmerich, H.: Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 57, 1–87 (2008)

    Article  Google Scholar 

  15. Steinbach, I.: Phase-field models in materials science. Modell. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77, 3625–3634 (2010)

    Article  Google Scholar 

  17. Provatas, N., Elder, K.: Phase Field Methods in Material Science and Engineering. Wiley, Hoboken (2010)

    Book  Google Scholar 

  18. Nestler, B., Choudhury, A.: Phase-field modeling of multi-component systems. Curr. Opin. Solid State Mater. Sci. 15, 93–105 (2011)

    Article  Google Scholar 

  19. Green, A.M., Rivlin, R.S.: Simple force and stress multipoles. Arch. Ration. Mech. Anal. 16, 325–353 (1964)

    MATH  MathSciNet  Google Scholar 

  20. Green, A.M., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mindlin, R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 54–78 (1964)

    Article  MathSciNet  Google Scholar 

  22. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  23. Cosserat, E., Cosserat, F.: Théorie des Corps Deformable. Hermann, Paris (1909)

    Google Scholar 

  24. Kafadar, C.B., Eringen, A.C.: Micropolar media: I. The classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)

    Article  MATH  Google Scholar 

  25. Forest, S.: The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)

    Article  Google Scholar 

  26. Eringen, A.C.: Mechanics of micromorphic materials. In: Gortler, H. (ed.) Proceedings of the 11th Congress of Applied Mechanics, pp. 131–138. Springer, Berlin (1964)

    Google Scholar 

  27. Eringen, A.C.: Microcontinuum Field Theories. I: Foundations and Solids. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  28. Ericksen, J.L.: Theory of anisotropic fluids. Arch. Ration. Mech. Anal. 4, 231–237 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 4, 23–24 (1961)

    Article  MathSciNet  Google Scholar 

  30. Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Goodman, D.C., Cowin, S.: A continuum theory of granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  32. Capriz, G.: Continua with Microstructure. Springer Tracts in Natural Philosophy, vol. 37. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  33. Segev, R.: A geometrical framework for the statics of materials with microstructure. Math. Models Methods Appl. Sci. 4, 871–897 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Fried, E.: Continua described by a microstructural field. Z. Angew. Math. Phys. 47, 168–175 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Maugin, G.A., Metrikine, A.V.: Mechanics of Generalized Continua. Advances in Mechanics and Mathematics, vol. 21. Springer, Berlin (2010)

    MATH  Google Scholar 

  36. Toupin, R.A.: Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  37. Noll, W.: La mécanique classique, basée sur un axiome d’ objectivité. In: La Méthode Axiomatique dans les Mécaniques Classique et Nouvelles (Colloque International à Paris, 1959), pp. 47–56. Gauthier-Villars, Paris (1963)

  38. Capriz, G., Virga, E.: On singular surfaces in the dynamics of continua with microstructure. Q. J. Appl. Math. 52, 509–517 (1994)

    MATH  MathSciNet  Google Scholar 

  39. Svendsen, B.: Continuum thermodynamic and rate variational formulation of models for extended continua. In: Markert, B. (ed.) Advances in Extended and Multifield Theories for Continua. Lecture Notes in Applied and Computational Mechanics, vol. 60, pp. 1–18. Springer, Berlin (2011)

    Chapter  Google Scholar 

  40. Noll, W.: Material uniform simple bodies with inhomogeneities. Arch. Ration. Mech. Anal. 27, 1–32 (1967)

    Article  MathSciNet  Google Scholar 

  41. Svendsen, B.: On the thermodynamic- and variational-based formulation of models for inelastic continua with internal lengthscales. Comput. Methods Appl. Mech. Eng. 48, 5429–5452 (2004)

    Article  MathSciNet  Google Scholar 

  42. Svendsen, B., Neff, P., Menzel, A.: On constitutive and configurational aspects of models for gradient continua with microstructure. Zeitschrift für Angewandte Mathematik und Mechanik 89, 687–697 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Miehe, C.: A multi-field incremental variational framework for gradient-extended standard dissipative solids. J. Mech. Phys. Solids 59, 898–923 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Miehe, C.: Variational gradient plasticity at finite strains. Part I: mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Comput. Methods Appl. Mech. Eng. 268, 677–703 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  45. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  46. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  47. Allen, S.M., Cahn, J.W.: A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  48. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1999)

    Article  MathSciNet  Google Scholar 

  49. Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive relations. Arch. Mech. 53, 653–675 (2001)

    MATH  MathSciNet  Google Scholar 

  50. Noll, W.: On the continuity of the solid and fluid states. J. Ration. Mech. Anal. 4, 3–81 (1955)

    MATH  MathSciNet  Google Scholar 

  51. De Groot, S., Mazur, P.: Non-Equlibrium Thermodynamics. North Holland, Amsterdam (1962)

    Google Scholar 

  52. Balluffi, R.W., Allen, S.M., Carter, W.C.: Kinetics of Materials. Wiley, Hoboken (2005)

    Book  Google Scholar 

  53. Hohenberg, P.C., Halperin, B.I.: Quasi-linear versus potential-based formulations of force-flux relations and the GENERIC for irreversible processes: comparisons and examples. Continuum Mech. Thermodyn. 25, 803–816 (2013)

    Article  Google Scholar 

  54. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Google Scholar 

  55. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  56. Germain, P.: Cours de Mécanique des Milieux Continus. Masson et Cie, Paris (1973)

    MATH  Google Scholar 

  57. Maugin, G.A.: Method of virtual power in continuum mechanics: application to coupled fields. Acta Mech. 35, 1–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  58. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  59. Del Piero, G.: On the method of virtual power in continuum mechanics. J. Mech. Mater. Struct. 4, 281–292 (2009)

    Article  Google Scholar 

  60. Podio-Guidugli, P.: A virtual power format for thermomechanics. Continuum Mech. Thermodyn. 20, 479–487 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  61. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  62. Fosdick, R.: Observations concerning virtual power. Math. Mech. Solids 16, 573–585 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  63. Truesdell, C.A.: Introduction to Rational Thermodynamics. Springer, Berlin (1984)

    Book  Google Scholar 

  64. García, R.E., Bishop, C.M., Carter, W.C.: Thermodynamically consistent variational principles with applications to electrically and magnetically active systems. Acta Mater. 52, 11–21 (2004)

    Article  Google Scholar 

  65. Truesdell, C.A., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1. Springer, Berlin (1960)

  66. Blenk, S., Muschik, W.: Orientational balances for nematic liquid crystals. J. Non-Equilib. Thermodyn. 16, 67–87 (1991)

    Article  MATH  Google Scholar 

  67. Muschik, W., Ehrentraut, H., Papenfuss, C.: Mesoscopic continuum mechanics. In: Maugin, G.A. (ed.) Geometry, Continua and Microstructure, Collection Travaux en Cours, vol. 60, pp. 49–60. Herrman, Paris (1999)

    Google Scholar 

  68. Svendsen, B.: On the continuum modeling of materials with kinematic structure. Acta Mech. 152, 49–80 (2001)

    Article  MATH  Google Scholar 

  69. Dahler, H.S., Scriven, L.E.: Theory of structured continua. I. General considerations of angular momentum and polarization. P. R. Soci. Lond. A 275, 505–527 (1964)

    Google Scholar 

  70. Pitteri, M.: On a statistical-kinetic model for generalized continua. Arch. Ration. Mech. Anal. 111, 99–120 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  71. Svendsen, B.: A statistical mechanical formulation of continuum fields and balance relations for granular and other materials with internal degrees of freedom. In: Wilmanski, H., Hutter, K. (eds.) Kinetic and Continuum Mechanical Approaches to Granular and Porous Materials, CISM, vol. 400, pp. 245–308. Springer, Berlin (1999)

    Google Scholar 

  72. Seguin, B., Fried, E.: Statistical foundations of liquid-crystal theory I: discrete systems of rod-ike molecules. Arch. Ration. Mech. Anal. 206, 1039–1072 (2012)

  73. Seguin, B., Fried, E.: Statistical foundations of liquid-crystal theory II: macroscopic balance laws. Arch. Ration. Mech. Anal. 207, 1–37 (2013)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Financial support of Subproject M03 in the Transregional Collaborative Research Center SFB/TRR 136 by the German Science Foundation (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Svendsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkov, S., Svendsen, B. Thermodynamic and rate variational formulation of models for inhomogeneous gradient materials with microstructure and application to phase field modeling. Acta Mech Sin 31, 162–172 (2015). https://doi.org/10.1007/s10409-015-0406-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0406-9

Keywords

Navigation