Skip to main content
Log in

A virtual power format for thermomechanics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

It is shown that a virtual power format slightly more general than usual may be employed to deduce all balance and imbalance laws of thermomechanics. An essential role is played by the notion of thermal displacement; the basic balance laws turn out to be those for momentum and entropy. In consequence of these balances and of two axioms of thermodynamical nature—namely, conservation of internal action in cyclic processes and dissipative nature of ordinary processes—balance of energy and inbalance of entropy are arrived at.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podio-Guidugli, P., Tiero, A.: Un formato tipo lavori virtuali per la termodinamica dei processi omogenei. In: Proceedings of the XIV Congr. Naz. Meccanica Teor. Appl, Como, Italy, October, 1999

  2. von Helmholtz H.: Prinzipien der Statik monocyklischer Systeme. Borchardt-Crelle’s Journal für die reine und angewandte Mathematik 97, 111–140 (1884)

    Article  Google Scholar 

  3. von Helmholtz, H.: Studien zur Statik monocyklischer Systeme. Sitzungsberichte der Kniglich Preussischen Akademie der Wissenschaften zu Berlin, I, pp. 159–177 (1884)

  4. Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432, 171–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Green A.E., Naghdi P.M.: A demonstration of consistency of an entropy balance with balance of energy. ZAMP 42, 159–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. DiCarlo A., Podio-Guidugli P., Williams W.O.: Shells with thickness distension. Int. J. Solids Struct. 38, 1201–1225 (2001)

    Article  MATH  Google Scholar 

  9. Germain. P.: Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus. C. R. Acad. Sci. Paris, 274, Série A, pp. 1051–1055 (1972)

  10. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: Théorie du second gradient. J. Mécanique 12, 235–274 (1973)

    MATH  MathSciNet  Google Scholar 

  11. Germain P.: The method of virtual power in continuum mechanics. Part 2, Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Antman S.S., Osborne J.E.: The principle of virtual work and integral laws of motion. Arch. Ration. Mech. Anal. 69, 231–262 (1979)

    Article  MATH  Google Scholar 

  13. Maugin G.A.: The method of virtual power in continuum mechanics: applications to coupled fields. Acta Mech. 35, 1–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  15. Müller I., Weiss W.: Entropy and Energy. A Universal Competition. Springer, Heidelberg (2005)

    Google Scholar 

  16. Clausius, R.: Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Poggendorff’s Ann. Physik 125 (1864)

  17. von Laue, M.: Relativitätstheorie, vol. 1. Vieweg, Braunschweig (1921)

  18. Podio-Guidugli P.: Inertia and invariance. Ann. Mat. Pura Appl. (IV) 172, 103–124 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lanczos C.: The Variational Principles of Mechanics. Dover, New York (1986)

    Google Scholar 

  20. de Broglie L.: La Thérmodynamique de la Particule Isolée. Gauthier-Villars, Paris (1964)

    Google Scholar 

  21. van Dantzig D.: On the phenomenological thermodynamics of moving matter. Physica 6, 673–704 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  22. de Broglie L.: Sur l’introduction de l’énergie libre dans la thermodynamique cachée des particules. C.R. T. 257, 1430–1433 (1963)

    Google Scholar 

  23. de Broglie L.: Sur la théorie des foyers cinétiques dans la thermodynamique de la particule isolée. C.R. T. 257, 1822–1824 (1963)

    Google Scholar 

  24. Roberts M.D.: Symmetry breaking using fluids II: velocity potential method. Hadronic J. 20, 73–83 (1997)

    MATH  Google Scholar 

  25. Roberts, M.D.: A generalized Higgs model. arXiv:hep-th/9904080v4

  26. Kuzmichev V.E., Kuzmichev V.V.: The Big Bang quantum cosmology: the matter–energy production epoch. Acta Phys. Pol. B 39(4), 979–995 (2008)

    Google Scholar 

  27. Kuzmichev V.E., Kuzmichev V.V.: Accelerating quantum universe. Acta Phys. Pol. B 39(8), 2003–2018 (2008)

    Google Scholar 

  28. Bao D., Marsden J., Walton R.: The Hamiltonian structure of general relativistic perfect fluids. Commun. Math. Phys. 99, 319–345 (1985)

    Article  MathSciNet  Google Scholar 

  29. Kijowski J., Smólski A., Górnicka A.: Hamiltonian theory of self-gravitating perfect fluid and a method of effective deparametrization of Einstein’s theory of gravitation. Phys. Rev. D 41(6), 1875–1884 (1990)

    Article  MathSciNet  Google Scholar 

  30. Brown J.D.: Action functionals for relativistic perfect fluids. Class. Quantum Grav. 10, 1579–1606 (1993)

    Article  MATH  Google Scholar 

  31. Maugin G.A.: Towards an analytical mechanics of dissipative materials. Rend. Sem. Mat. Univ. Pol. Torino 58(2), 171–180 (2000)

    MATH  MathSciNet  Google Scholar 

  32. Maugin G.A., Kalpakides V.K.: The slow march towards an analytical mechanics of dissipative materials. Tech. Mech. 22(2), 98–103 (2002)

    Google Scholar 

  33. Maugin G.A., Kalpakides V.K.: A Hamiltonian formulation for elasticity and thermoelasticity. J. Phys. A Math. Gen. 35, 10775–10788 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Dascalu C., Maugin G.A.: The thermoelastic material–momentum equation. J. Elast. 39, 201–212 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Bargmann S., Steinmann P.: Theoretical and computational aspects of non-classical thermoelasticity. Comp. Method Appl. Mech. Eng. 196, 516–527 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kalpakides V.K., Dascalu C.: On the configurational force balance in thermomechanics. Proc. R. Soc. Lond. A 458, 3023–3039 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Podio-Guidugli.

Additional information

Dedicated to Tommaso Ruggeri, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podio-Guidugli, P. A virtual power format for thermomechanics. Continuum Mech. Thermodyn. 20, 479–487 (2009). https://doi.org/10.1007/s00161-009-0093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0093-5

Keywords

PACS

Navigation