Skip to main content
Log in

Cubic autocatalysis-based activation energy and thermophoretic diffusion effects of steady micro-polar nano-fluid

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Cubic catalysts are very crucial in the fluid mechanics due to the chemical processes boosted with less energy. Cubic catalysts in the chemical process have numerous applications in the chemical engineering and food industry, like transformation or storage of different types of food materials, turning raw materials into useful products and accelerate the rate of food formation processes. This article brings the numerical analysis of the activation energy along with the impacts of the chemical process using the micro-polar nano-fluid subject to the cubic autocatalysis. Furthermore, thermophoretic diffusion and Brownian motion have also been investigated in this work. The set of equations of motion, temperature, concentration, and angular momentum in the differential form along with the associated boundary conditions has been presented for micro-polar nano-fluid. The similarity variables are being utilized for the conversion of ordinary differential equations (ODEs) into the partial differential equations (PDEs). A familiar shooting technique is applied to convert the boundary conditions into the initial value problems and further the first kind of obtained ODEs numerically handled by the bvp4c procedure. Moreover, the physical parameters with the profiles of velocity, temperature and concentration along with the physical quantities of couple stress and local skin friction have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(K_{1}\) :

Coupling constant

S :

Constant fluid characteristic

\({\text{Ea}}\) :

Activation energy coefficient

K :

Thermal conductivity

\(\tau\) :

Ratio parameter

T :

Fluid temperature

C :

Fluid concentration

\(D_{{\text{B}}}\) :

Coefficient of \({\text{Nb}}\)

\(D_{{\text{T}}}\) :

Thermophoresis coefficient

\(T_{\infty }\) :

Infinite temperature

T w :

Temperature of the plate

\(G_{1}\) :

Micro rotation constant

\(\rho\) :

Fluid density

\(g_{1}\) :

Magnitude of the gravity

\(\alpha\) :

Thermal diffusivity

\(c_{{\text{p}}}\) :

Specific heat

\(w\) :

Constant

\(B_{{\text{A}}}\) :

Pre-exponential factor

\(G_{{\text{r}}}\) :

Grashof number

\(G_{{\text{c}}}\) :

Buoyancy ratio parameter

\(G\) :

Micro rotation parameter

\(\Pr\) :

Prandtl number

\({\text{Nb}}\) :

Brownian motion

\({\text{Nt}}\) :

Thermophoresis parameter

\({\text{Sc}}\) :

Schmidt number

\(\lambda^{A}\) :

Activation energy parameter

\({\text{Bi}}_{\theta }\) :

Thermal Biot number

\(\beta^{*}\) :

Thermal expansion coefficient

\(\beta^{**}\) :

Mass diffusion coefficient

\(\nu\) :

Kinematic viscosity

\(c_{{\text{f}}}\) :

Skin friction coefficient

\({\text{R}}_{ex}\) :

Local Reynold number

\(N_{{{\text{u}}x}}\) :

Nusselt number

\(m_{{\text{w}}}\) :

Couple stress

\({\text{Sh}}_{x}\) :

Sherwood number

\(\sigma\) :

Micro rotation component

References

  • Abbas N, Nadeem S, Khan MN (2021) Numerical analysis of unsteady magnetized micropolar fluid flow over a curved surface. J Therm Anal Calorim 2021:1–11

    Google Scholar 

  • Adel W, Sabir Z (2020) Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method. Eur Phys J plus 135(5):1–12

    Google Scholar 

  • Ali U, Malik MY, Rehman KU, Alqarni MS (2020) Exploration of cubic autocatalysis and thermal relaxation in a non-Newtonian flow field with MHD effects. Physica A 549:124349

    MathSciNet  Google Scholar 

  • Anbuchezhian N, Srinivasan K, Chandrasekaran K, Kandasamy R (2012) Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Appl Math Mech 33(6):765–780

    MathSciNet  MATH  Google Scholar 

  • Awad FG, Motsa S, Khumalo M (2014) Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. PLoS ONE 9(9):e107622. https://doi.org/10.1371/journal.pone.0107622

    Article  Google Scholar 

  • Ayub A, Sabir Z, Shah SZH, Mahmoud SR, Algarni A, Sadat R, Ali MR (2022) Aspects of infinite shear rate viscosity and heat transport of magnetized Carreau nanofluid. Eur Phys J plus 137(2):1–17

    Google Scholar 

  • Babu MJ, Sandeep N (2016) Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Adv Powder Technol 27(5):2039–2050

    Google Scholar 

  • Bestman F (1990) Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Eng Res 14:89–396. https://doi.org/10.1002/er.4440140403

    Article  Google Scholar 

  • Bhattacharjee B, Chakraborti P, Choudhuri K (2019) Evaluation of the performance characteristics of double-layered porous micropolar fluid lubricated journal bearing. Tribol Int 138:415–423

    Google Scholar 

  • Chu YM, Hashmi MS, Khan N, Khan SU, Khan MI, Kadry S, Abdelmalek Z (2020) Thermophoretic particles deposition features in thermally developed flow of Maxwell fluid between two infinite stretched disks. J Market Res 9(6):12889–12898

    Google Scholar 

  • Chu YM, Nazir U, Sohail M, Selim MM, Lee JR (2021) Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fract Fract 5(3):119

    Google Scholar 

  • Eringen AC (1964) Simple microfluids. Int J Eng Sci 2(2):205–217

    MathSciNet  MATH  Google Scholar 

  • Eringen AC (1966) Theory of micropolar fluids. J Math Mech 1966:1–18

    MathSciNet  Google Scholar 

  • Galdi GP, Rionero S (1977) A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int J Eng Sci 15(2):105–108

    MathSciNet  MATH  Google Scholar 

  • Guerrero Sánchez Y, Sabir Z, Günerhan H, Baskonus HM (2020) Analytical and approximate solutions of a novel nervous stomach mathematical model. Discrete Dyn Nature Soc 2020(1):9

    MathSciNet  MATH  Google Scholar 

  • Guirao JL, Sabir Z, Saeed T (2020) Design and numerical solutions of a novel third-order nonlinear Emden-Fowler delay differential model. Math Probl Eng 2020(1):9

    MATH  Google Scholar 

  • Haq F, Kadry S, Chu YM, Khan M, Khan MI (2020) Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy. J Market Res 9(5):10468–10477

    Google Scholar 

  • Ijaz Khan M, Qayyum S, Nigar M, Chu YM, Kadry S (2020) Dynamics of Arrhenius activation energy in flow of Carreau fluid subject to Brownian motion diffusion. Numer Methods Part Differ Equ 1:5

    Google Scholar 

  • Ishak A, Lok YY, Pop I (2010) Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem Eng Commun 197(11):1417–1427

    Google Scholar 

  • Kameswaran PK, Shaw S, Sibanda P et al (2013) Homogeneous-heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int J Heat Mass Transf 57:465–472

    MATH  Google Scholar 

  • Khan WA, Ali M (2019) Recent developments in modeling and simulation of entropy generation for dissipative cross material with quartic autocatalysis. Appl Phys A 125(6):1–9

    Google Scholar 

  • Khan M, Kumar A, Hayat T et al (2019a) Entropy generation in flow of Carreau nanofluid. J Mol Liq 278:677–687

    Google Scholar 

  • Khan WA, Ali M, Sultan F, Shahzad M, Khan M, Irfan M (2019b) Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of cross magnetofluid. Pramana 92(2):1–9

    Google Scholar 

  • Khan MI, Waqas H, Khan SU, Imran M, Chu YM, Abbasi A, Kadry S (2021) Slip flow of micropolar nanofluid over a porous rotating disk with motile microorganisms, nonlinear thermal radiation and activation energy. Int Commun Heat Mass Transfer 122:105161

    Google Scholar 

  • Koriko OK, Animasaun IL, Omowaye AJ, Oreyeni T (2019) The combined influence of nonlinear thermal radiation and thermal stratification on the dynamics of micropolar fluid along a vertical surface. Multidiscip Model Mater Struct 15:133–155

    Google Scholar 

  • Kumar KA, Sugunamma V, Sandeep N, Mustafa M (2019) Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink. Sci Rep 9(1):1–14

    Google Scholar 

  • Kumbhar P, Sawant J, Ghosalkar A (2016) Catalysis for renewable chemicals. In: Industrial catalytic processes for fine and specialty chemicals (pp 597–662), Elsevier

  • Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49(2):243–247

    Google Scholar 

  • Lakshmi RV, Sarojamma G, Sreelakshmi K, Vajravelu K (2019) Heat transfer analysis in a micropolar fluid with non-linear thermal radiation and second-order velocity slip. Appl Math Sci Comput 2019:385–395

    MATH  Google Scholar 

  • Makinde OD, Olanrewaju PO, Charles WM (2011) Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afr Mate 22:65–78. https://doi.org/10.1007/s13370-011-0008-z

    Article  MathSciNet  MATH  Google Scholar 

  • Maleque KA (2013) Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J Thermodyn. https://doi.org/10.1155/2013/692516

    Article  Google Scholar 

  • Malvandi A, Ganji DD (2014) Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field. Int J Therm Sci 84:196–206

    Google Scholar 

  • Mehmood A, Afsar K, Zameer A, Awan SE, Raja MAZ (2019) Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. Appl Soft Comput 79:139–162

    Google Scholar 

  • Mitarai N, Hayakawa H, Nakanishi H (2002) Collisional granular flow as a micropolar fluid. Phys Rev Lett 88(17):174301

    Google Scholar 

  • Nadeem S, Abbas N, Elmasry Y, Malik MY (2020) Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame. Comput Methods Programs Biomed 186:105194

    Google Scholar 

  • Naganthran K, Md Basir MF, Thumma T, Ige EO, Nazar R, Tlili I (2021) Scaling group analysis of bioconvective micropolar fluid flow and heat transfer in a porous medium. J Therm Anal Calorim 143(3):1943–1955

    Google Scholar 

  • Nazar R, Amin N, Filip D, Pop I (2004) Stagnation point flow of a micropolar fluid towards a stretching sheet. Int J Non-Linear Mech 39(7):1227–1235

    MATH  Google Scholar 

  • Papautsky I, Ameel T, Frazier AB (2001) A review of laminar single-phase flow in microchannels. ASME Proc Int Mech Eng Congress Expos Proc (IMECE) 2:3067–3075

    Google Scholar 

  • Pasha P, Mirzaei S, Zarinfar M (2022) Application of numerical methods in micropolar fluid flow and heat transfer in permeable plates. Alex Eng J 61(4):2663–2672

    Google Scholar 

  • Peddieson J Jr (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10(1):23–32

    Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids, pp 588–595

  • Puneeth V, Manjunatha S, Gireesha BJ (2021) Quartic autocatalysis of homogeneous and heterogeneous reactions in the bioconvective flow of radiating micropolar nanofluid between parallel plates. Heat Transfer 50(6):5925–5950

    Google Scholar 

  • Raees A, Wang RZ, Xu H (2018) A homogeneous-heterogeneous model for mixed convection in gravity-driven film flow of nanofluids. Int Commun Heat Mass Transf 95:19–24

    Google Scholar 

  • Ramesh K, Khan SU, Jameel M, Khan MI, Chu YM, Kadry S (2020) Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy. Surf Interfaces 21:100749

    Google Scholar 

  • Ramzan M, Gul H, Kadry S, Chu YM (2021) Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int Commun Heat Mass Transfer 120:104994

    Google Scholar 

  • Rees DAS, Bassom AP (1996) The Blasius boundary-layer flow of a micropolar fluid. Int J Eng Sci 34(1):113–124

    MathSciNet  MATH  Google Scholar 

  • Sabir Z (2022) Stochastic numerical investigations for nonlinear three-species food chain system. Int J Biomath 15(04):2250005

    MathSciNet  MATH  Google Scholar 

  • Sabir Z, Ayub A, Guirao JL, Bhatti S, Shah SZH (2020a) The effects of activation energy and thermophoretic diffusion of nanoparticles on steady micropolar fluid along with Brownian motion. Adv Mater Sci Eng 1:12

    Google Scholar 

  • Sabir Z, Sakar MG, Yeskindirova M, Saldir O (2020b) Numerical investigations to design a novel model based on the fifth order system of Emden-Fowler equations. Theor Appl Mech Lett 10(5):333–342

    Google Scholar 

  • Sabir Z, Günerhan H, Guirao JL (2020c) On a new model based on third-order nonlinear multisingular functional differential equations. Math Probl Eng 2020(1):9

    MathSciNet  Google Scholar 

  • Sabir Z, Wahab HA, Javeed S, Baskonus HM (2021) An efficient stochastic numerical computing framework for the nonlinear higher order singular models. Fract Fract 5(4):176

    Google Scholar 

  • Sabir Z, Wahab HA, Guirao JL (2022a) A novel design of Gudermannian function as a neural network for the singular nonlinear delayed, prediction and pantograph differential models. Math Biosci Eng 19(1):663–687

    MATH  Google Scholar 

  • Sabir Z, Baleanu D, Ali MR, Sadat R (2022b) A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems. Int J Comput Math 2022:1–14

    Google Scholar 

  • Sabir Z, Wahab HA, Ali MR, Sadat R (2022c) Neuron analysis of the two-point singular boundary value problems arising in the thermal explosion’s theory. Neural Process Lett 2022:1–28

    Google Scholar 

  • Saghir MZ, Rahman MM (2021) Brownian motion and thermophoretic effects of flow in channels using nanofluid: a two-phase model. Int J Thermofluids 10:100085

    Google Scholar 

  • Sajid T, Tanveer S, Sabir Z, Guirao JLG (2020) Impact of activation energy and temperature-dependent heat source/sink on maxwell–sutterby fluid. Math Probl Eng 1:15

    MathSciNet  MATH  Google Scholar 

  • Sánchez YG, Sabir Z, Guirao JL (2020) Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19). Fractals 28(08):2040026

    MATH  Google Scholar 

  • Sarojamma G, Vijaya Lakshmi R, Naryana PVS et al (2019) Exploration of the significance of autocatalytic chemical reaction and Cattaneo-Christov heat flux on the dynamics of a micropolar fluid. J Appl Comput Mech 6:77–89

    Google Scholar 

  • Shah Z, Gul T, Khan AM, Ali I, Islam S, Husain F (2017) Effects of hall current on steady three dimensional non-newtonian nanofluid in a rotating frame with brownian motion and thermophoresis effects. J Eng Technol 6(280):e296

    Google Scholar 

  • Shah SZH, Ayub A, Sabir Z, Adel W, Shah NA, Yook SJ (2021) Insight into the dynamics of time-dependent cross nanofluid on a melting surface subject to cubic autocatalysis. Case Stud Therm Eng 27:101227

    Google Scholar 

  • Shah SZH, Fathurrochman I, Ayub A, Altamirano GC, Rizwan A, Núñez RAS, Sabir Z, Yeskindirova M (2022) Inclined magnetized and energy transportation aspect of infinite shear rate viscosity model of Carreau nanofluid with multiple features over wedge geometry. Heat Transfer 51(2):1622–1648

    Google Scholar 

  • Shamshuddin MD, Thirupathi T, Satya Narayana PV (2019) Micropolar fluid flow induced due to a stretching sheet with heat source/sink and surface heat flux boundary condition effects. J Appl Comput Mech 5(5):816–826

    Google Scholar 

  • Sheikholeslami M, Ebrahimpour Z (2022) Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape. Int J Therm Sci 176:107505

    Google Scholar 

  • Sheikholeslami M, Farshad SA (2022) Nanoparticles transportation with turbulent regime through a solar collector with helical tapes. Adv Powder Technol 33(3):103510

    Google Scholar 

  • Sheikholeslami M, Rokni HB (2018) Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids 30(1):012003

    Google Scholar 

  • Sheikholeslami M, Said Z, Jafaryar M (2022a) Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid. Renew Energy 188:922–932

    Google Scholar 

  • Sheikholeslami M, Jafaryar M, Gerdroodbary MB, Alavi AH (2022b) Influence of novel turbulator on efficiency of solar collector system. Environ Technol Innov 26:102383

    Google Scholar 

  • Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94(22):223101

    Google Scholar 

  • Siddheshwar PG, Pranesh S (1998) Magnetoconvection in a micropolar fluid. Int J Eng Sci 36(10):1173–1181

    Google Scholar 

  • Song YQ, Khan SA, Imran M, Waqas H, Khan SU, Khan MI, Chu YM et al (2021) Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk. Alex Eng J 60(5):4607–4618

    Google Scholar 

  • Sulochana C, Ashwinkumar GP, Sandeep N (2016) Transpiration effect on stagnation-point flow of a Carreau nanofluid in the presence of thermophoresis and Brownian motion. Alex Eng J 55(2):1151–1157

    Google Scholar 

  • Sultan F, Khan WA, Ali M, Shahzad M, Irfan M, Khan M (2019) Theoretical aspects of thermophoresis and Brownian motion for three-dimensional flow of the cross fluid with activation energy. Pramana 92(2):1–10

    Google Scholar 

  • Ullah A, Alzahrani EO, Shah Z, Ayaz M, Islam S (2019) Nanofluids thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with Brownian motion and thermophoresis effects. Coatings 9(1):21

    Google Scholar 

  • Umar M, Akhtar R, Sabir Z, Wahab HA, Zhiyu Z, Imran A, Shoaib M, Raja MAZ (2019) Numerical treatment for the three-dimensional eyring-powell fluid flow over a stretching sheet with velocity slip and activation energy. Adv Math Phys 2019(1):12

    MathSciNet  MATH  Google Scholar 

  • Waqas H, Khan SA, Khan SU, Khan MI, Kadry S, Chu YM (2021) Falkner-Skan time-dependent bioconvrction flow of cross nanofluid with nonlinear thermal radiation, activation energy and melting process. Int Commun Heat Mass Transfer 120:105028

    Google Scholar 

  • Xia WF, Haq F, Saleem M, Khan MI, Khan SU, Chu YM (2021) Irreversibility analysis in natural bio-convective flow of Eyring-Powell nanofluid subject to activation energy and gyrotactic microorganisms. Ain Shams Eng J 12(4):4063–4074

    Google Scholar 

  • Zuhra S, Khan NS, Alam M, Islam S, Khan A (2020) Buoyancy effects on nanoliquids film flow through a porous medium with gyrotactic microorganisms and cubic autocatalysis chemical reaction. Adv Mech Eng 12(1):1687814019897510

    Google Scholar 

Download references

Acknowledgements

The first author thanks the Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singkibud, P., Sabir, Z., Al Nuwairan, M. et al. Cubic autocatalysis-based activation energy and thermophoretic diffusion effects of steady micro-polar nano-fluid. Microfluid Nanofluid 26, 50 (2022). https://doi.org/10.1007/s10404-022-02554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-022-02554-y

Keywords

Navigation