Skip to main content
Log in

Enhanced electroosmotic flow and ion selectivity in a channel patterned with periodically arranged polyelectrolyte-filled grooves

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

An enhanced electroosmotic flow through a surface-modulated microchannel is considered. The microchannel is modulated by periodically arranged rectangular grooves filled with polyelectrolyte materials. The flat surface of the walls is maintained at a constant charge density. A nonlinear model based on the Poisson–Nernst–Planck equations coupled with the Darcy–Brinkman–Forchheimer equation in the polyelectrolyte region and Navier–Stokes equations in the clear fluid region is adopted. Going beyond the widely employed Debye–Hückel linearization, we adopt numerical methods to elucidate the effect of pertinent parameters on electroosmosis in the patterned channel. The patterned microchannel results in an enhancement in the average EOF by creating an intrinsic velocity slip at the polyelectrolyte–liquid interface. An analytical solution of the EOF for a limiting case in which the groove width is much higher than the channel height is obtained based on the Debye–Hückel approximation. This analytical solution is in good agreement with the present numerical model when a low charge density and a thin Debye layer are considered. We have also established an analogy between the EOF in a polyelectrolyte-filled grooved-channel with the EOF in which the grooves are replaced by the charged slipping planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander S (1977) Polymer adsorption on small spheres. a scaling approach. J Phys 38(8):977–981

    Article  Google Scholar 

  • Asmolov ES, Nizkaya TV, Vinogradova OI (2018) Enhanced slip properties of lubricant-infused grooves. Phys Rev E 98(3):033103

    Article  Google Scholar 

  • Bag N, Bhattacharyya S, Gopmandal PP, Ohshima H (2018) Electroosmotic flow reversal and ion selectivity in a soft nanochannel. Colloid Polym Sci 296(5):849–859

    Article  Google Scholar 

  • Bahga SS, Vinogradova OI, Bazant MZ (2010) Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J Fluid Mech 644:245–255

    Article  Google Scholar 

  • Belyaev AV, Vinogradova OI (2011) Electro-osmosis on anisotropic superhydrophobic surfaces. Phys Rev Lett 107(9):098301

    Article  Google Scholar 

  • Bhattacharyya S, Bag N (2017) Enhanced electroosmotic flow through a nanochannel patterned with transverse periodic grooves. J Fluids Eng 139(8):081203

    Article  Google Scholar 

  • Bhattacharyya S, Pal S (2018) Enhanced electroosmotic flow in a nano-channel patterned with curved hydrophobic strips. Appl Math Model 54:567–579

    Article  MathSciNet  Google Scholar 

  • Bhattacharyya S, Dhinakaran S, Khalili A (2006) Fluid motion around and through a porous cylinder. Chem Eng Sci 61(13):4451–4461

    Article  Google Scholar 

  • Busse A, Sandham ND, McHale G, Newton MI (2013) Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. J Fluid Mech 727:488–508

    Article  MathSciNet  Google Scholar 

  • Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10(38):7558–7568

    Article  Google Scholar 

  • Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363

    Article  Google Scholar 

  • Chen G, Das S (2017) Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes. J Phys Chem B 121(14):3130–3141

    Article  Google Scholar 

  • Coster HG (1973) The double fixed charge membrane. Biophys J 13(2):118–132

    Article  Google Scholar 

  • De Gennes P (1976) Scaling theory of polymer adsorption. J Phys 37(12):1445–1452

    Article  Google Scholar 

  • De Gennes P (1980) Conformations of polymers attached to an interface. Macromolecules 13(5):1069–1075

    Article  Google Scholar 

  • DeGroot C, Wang C, Floryan J (2016) Drag reduction due to streamwise grooves in turbulent channel flow. J Fluids Eng 138(12):121201

    Article  Google Scholar 

  • Duval JF (2005) Electrokinetics of diffuse soft interfaces. 2. Analysis based on the nonlinear Poisson–Boltzmann equation. Langmuir 21(8):3247–3258

    Article  Google Scholar 

  • Duval JF, van Leeuwen HP (2004) Electrokinetics of diffuse soft interfaces. 1. Limit of low donnan potentials. Langmuir 20(23):10324–10336

    Article  Google Scholar 

  • Duval JF, Zimmermann R, Cordeiro AL, Rein N, Werner C (2009) Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films. Langmuir 25(18):10691–10703

    Article  Google Scholar 

  • Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    Google Scholar 

  • Feuillebois F, Bazant MZ, Vinogradova OI (2010) Transverse flow in thin superhydrophobic channels. Phys Rev E 82(5):055301

    Article  Google Scholar 

  • Fletcher CA (1991) Computational techniques for fluid dynamics, vol 2, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Hill RJ, Saville D (2005) Exact solutions of the full electrokinetic model for soft spherical colloids: electrophoretic mobility. Colloids Surf A 267(1–3):31–49

    Article  Google Scholar 

  • Hill RJ, Saville D, Russel W (2003) Electrophoresis of spherical polymer-coated colloidal particles. J Colloid Interface Sci 258(1):56–74

    Article  Google Scholar 

  • Hsu C, Cheng P (1990) Thermal dispersion in a porous medium. Int J Heat Mass Transf 33(8):1587–1597

    Article  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5(4):297

    Article  Google Scholar 

  • Lauga E, Stone HA (2003) Effective slip in pressure-driven Stokes flow. J Fluid Mech 489(6):55–77

    Article  MathSciNet  Google Scholar 

  • Lauga E, Brenner MP, Stone HA (2007) Microfluidics: the no-slip boundary condition. In: Foss J, Tropea C, Yarin A (eds) Handbook of experimental fluid mechanics. Springer, Berlin

    Google Scholar 

  • Lee C, Choi C-H et al (2008) Structured surfaces for a giant liquid slip. Phys Rev Lett 101(6):064501

    Article  Google Scholar 

  • Lee C, Choi C-H, Kim C-J (2016) Superhydrophobic drag reduction in laminar flows: a critical review. Exp Fluids 57(12):176

    Article  Google Scholar 

  • Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19(1):59–98

    Article  Google Scholar 

  • López-Garcıa JJ, Horno J, Grosse C (2003) Suspended particles surrounded by an inhomogeneously charged permeable membrane. Solution of the Poisson—Boltzmann equation by means of the network method. J Colloid Interface Sci 268(2):371–379

    Article  Google Scholar 

  • Maduar S, Belyaev A, Lobaskin V, Vinogradova O (2015) Electrohydrodynamics near hydrophobic surfaces. Phys Rev Lett 114(11):118301

    Article  Google Scholar 

  • Matin MH, Ohshima H (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interface Sci 460:361–369

    Article  Google Scholar 

  • Matin MH, Ohshima H (2016) Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics. J Colloid Interface Sci 476:167–176

    Article  Google Scholar 

  • Mohammadi A, Floryan J (2015) Numerical analysis of laminar-drag-reducing grooves. J Fluids Eng 137(4):041201

    Article  Google Scholar 

  • Ng C-O, Chu HC (2011) Electrokinetic flows through a parallel-plate channel with slipping stripes on walls. Phys Fluids 23(10):102002

    Article  Google Scholar 

  • Papadopoulos P, Deng X, Vollmer D, Butt H-J (2012) Electrokinetics on superhydrophobic surfaces. J Phys Condens Matter 24(46):464110

    Article  Google Scholar 

  • Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12(27):5968–5978

    Article  Google Scholar 

  • Schäffel D, Koynov K, Vollmer D, Butt H-J, Schönecker C (2016) Local flow field and slip length of superhydrophobic surfaces. Phys Rev Lett 116(13):134501

    Article  Google Scholar 

  • Schönecker C, Hardt S (2013) Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J Fluid Mech 717:376–394

    Article  MathSciNet  Google Scholar 

  • Schönecker C, Baier T, Hardt S (2014) Influence of the enclosed fluid on the flow over a microstructured surface in the cassie state. J Fluid Mech 740:168–195

    Article  MathSciNet  Google Scholar 

  • Squires TM (2008) Electrokinetic flows over inhomogeneously slipping surfaces. Phys Fluids (1994–Present) 20(9):092105

    Article  Google Scholar 

  • Steffes C, Baier T, Hardt S (2011) Enabling the enhancement of electroosmotic flow over superhydrophobic surfaces by induced charges. Colloids Surf A 376(1–3):85–88

    Article  Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901

    Article  Google Scholar 

  • Tandon V, Bhagavatula SK, Nelson WC, Kirby BJ (2008) Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 29(5):1092–1101

    Article  Google Scholar 

  • Yang M, Yang X, Wang K, Wang Q, Fan X, Liu W, Liu X, Liu J, Huang J (2015) Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes. Anal Chem 87(3):1544–1551

    Article  Google Scholar 

  • Yaroshchuk AE (2000) Dielectric exclusion of ions from membranes. Adv Colloid Interface Sci 85(2–3):193–230

    Article  Google Scholar 

  • Yeh L-H, Zhang M, Hu N, Joo SW, Qian S, Hsu J-P (2012a) Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes. Nanoscale 4(16):5169–5177

    Article  Google Scholar 

  • Yeh L-H, Zhang M, Qian S, Hsu J-P (2012b) Regulating DNA translocation through functionalized soft nanopores. Nanoscale 4(8):2685–2693

    Article  Google Scholar 

  • Yeh L-H, Zhang M, Qian S, Hsu J-P, Tseng S (2012c) Ion concentration polarization in polyelectrolyte-modified nanopores. J Phys Chem C 116(15):8672–8677

    Article  Google Scholar 

  • Yusko EC, An R, Mayer M (2009) Electroosmotic flow can generate ion current rectification in nano-and micropores. ACS Nano 4(1):477–487

    Article  Google Scholar 

  • Zhang XH, Zhang XD, Lou ST, Zhang ZX, Sun JL, Hu J (2004) Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. Langmuir 20(9):3813–3815

    Article  Google Scholar 

  • Zhang X, Wang L, Levänen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3(30):12003–12020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 63 KB)

Appendix 1

Appendix 1

We now consider a slit channel of scaled height \(1+d_1\) with one wall coated with step-like polyelectrolyte of thickness \(d_1\). The distribution of monomers in PE is assumed to be uniform. We assume the charge density residing along the channel wall as well the immobile charges entrapped within the PE are low enough so that we can invoke the Debye–Hückel approximation to linearize the Poisson–Boltzmann equation. Under these assumptions, the governing equations for the electric potential as well as velocity field can be written in non-dimensional form as

$$\begin{aligned}&\left\{ \begin{array}{ll} \frac{{\text {d}}^2 \phi }{{\text {d}}y^2}= (\kappa H)^2 \phi - Q_{f}; &{} {-d_1 \le y \le 0} \\ \frac{{\text {d}}^2 \phi }{{\text {d}}y^2}= (\kappa H)^2 \phi ; &{} {0 \le y \le 1} \end{array} \right. \end{aligned}$$
(15)
$$\begin{aligned}&\left\{ \begin{array}{ll} \frac{{\text {d}}^2 u}{{\text {d}}y^2} - (\kappa H)^2 \phi -\beta ^2 u=0; &{} {-d_1 \le y \le 0} \\ \frac{{\text {d}}^2 u}{{\text {d}}y^2} - (\kappa H)^2 \phi =0; &{} {0 \le y \le 1} \end{array} \right. \end{aligned}$$
(16)

Here \(Q_{\text {f}}=\rho _{\text {f}}H^2/\varepsilon _{\text {e}}\phi _0\) is the scaled charge density inside the PE and \(d_1 = d/H\) is nominal thickness of the PE. The above equations are solved using following boundary conditions

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{{\text {d}} \phi }{{\text {d}}y}=0, \quad u=0; \quad {\text {at }} y=- \ d_1 &{} \\ \frac{{\text {d}} \phi }{{\text {d}}y}=\sigma^* , \quad u=0; \quad {\text {at }} y=1 &{} \end{array} \right. \end{aligned}$$
(17)

The continuity conditions along the PE–electrolyte interface (i.e., \(y= 0\)) can be expressed as (Matin and Ohshima 2015, 2016)

$$\begin{aligned} \left\{ \begin{array}{ll} \phi |_{y=0^+}=\phi |_{y=0^-} &{} \\ u|_{y=0^+}=u|_{y=0^-} &{} \\ \frac{{\text {d}}\phi }{{\text {d}}y}|_{y=0^+}=\frac{{\text {d}}\phi }{{\text {d}}y}|_{y=0^-} &{} \\ \mu \frac{{\text {d}}u}{{\text {d}}y}|_{y=0^+}={\tilde{\mu }}\frac{{\text {d}}u}{{\text {d}}y}|_{y=0^-} &{} \end{array} \right. . \end{aligned}$$
(18)

Here \(\mu\) and \({\tilde{\mu }}\) are the viscosity of the fluid and porous medium, respectively. In this study, we have taken a dilute polyelectrolyte gel so that the viscosity of these two media can be considered to be equal, i.e., \(\mu = {\tilde{\mu }}\).

The closed form solution for the electrostatic potential and axial velocity can be obtained as

$$\begin{aligned} \phi (y)=\, & {} \left\{ \begin{array}{ll} \frac{\sigma^* }{\kappa H} \frac{\cosh \kappa H (d_1+y)}{\sinh \kappa H(1+d_1)}+ \frac{Q_{\text {f}}}{(\kappa H)^2} \left[ 1- \frac{\sinh (\kappa H)\cosh \kappa H(d_1+y)}{\sinh \kappa H(1+d_1)}\right] ; &{} {-d_1 \le y \le 0} \\ \frac{\sigma^* }{\kappa H} \frac{\cosh \kappa H (d_1+y)}{\sinh \kappa H(1+d_1)}+ \frac{Q_{\text {f}}}{(\kappa H)^2} \frac{\sinh (\kappa Hd_1)\cosh \kappa H(1-y)}{\sinh \kappa H(1+d_1)}; &{} { 0 \le y \le 1} \end{array} \right. \end{aligned}$$
(19)
$$\begin{aligned} u(y)=\, & {} \left\{ \begin{array}{ll} C_4 \left[ \cosh (\beta y)+\frac{\sinh (\beta y)}{\tanh (\beta d_1)}\right] -C_5\left[ 1+\frac{\sinh (\beta y)}{\sinh (\beta d_1)}\right] \\ -C_6\left[ \frac{\sinh (\beta y)}{\sinh (\beta d_1)} +\cosh \kappa H(d_1+y)\right] \\ +C_7\left[ \frac{\sinh (\beta y)}{\sinh (\beta d_1)} +\cosh \kappa H(d_1+y)\right] ; &{} {-d_1 \le y \le 0 } \\ C_1 \left[ \cosh \kappa H(d_1+y)-\cosh \kappa H(1+d_1)\right] \\ +C_2\left[ \cosh \kappa H(1-y)- 1 \right] -C_3(1-y); &{} {0 \le y \le 1} \end{array} \right. . \end{aligned}$$
(20)

The coefficients \(C_i (i=1,2,\ldots ,7)\) are given by

$$\begin{aligned} \left\{ \begin{array}{ll} C_1=\frac{\sigma^* }{\kappa H \sinh \kappa H (1+d_1)} &{} \\ C_2=\frac{Q_{\text {f}}}{(\kappa H)^2} \frac{\sinh (\kappa Hd_1)}{\sinh \kappa H(1+d_1)} &{} \\ C_5=\frac{Q_{\text {f}}}{\beta ^2} &{} \\ C_6=\frac{Q_{\text {f}}}{(\kappa H)^2-\beta ^2} \frac{\sinh (\kappa H)}{\sinh \kappa H(1+d_1)} &{} \\ C_7=\frac{\sigma^* \kappa H}{(\kappa H)^2-\beta ^2} \frac{1}{\sinh \kappa H(1+d_1)} &{} \\ C_3=C_1 [ \cosh (\kappa Hd_1)-\cosh \kappa H(1+d_1) ]+C_2[ \cosh (\kappa H)-1 ]\\ -C_4+C_5+C_6\cosh (\kappa Hd_1)-C_7\cosh (\kappa Hd_1) &{} \\ \tilde{C_4}=C_1 [\cosh (\kappa H d_1)-\cosh \kappa H(1+d_1)+\kappa H \sinh (\kappa Hd_1) ]\\ +C_2\left[ \cosh (\kappa H)-1-\kappa H \sinh (\kappa H)\right] +C_5\left[ 1+\frac{\beta }{\sinh (\beta d_1)}\right] \\ +C_6\left[ \cosh (\kappa H d_1)+\frac{\beta }{\sinh (\beta d_1)}+\kappa H \sinh (\kappa Hd_1)\right] \\ -C_7\left[ \cosh (\kappa H d_1)+\frac{\beta }{\sinh (\beta d_1)}+\kappa H \sinh (\kappa Hd_1)\right] \\ C_4=\frac{\tilde{C_4}}{\left[ 1+\frac{\beta }{\tanh (\beta d_1)}\right] } &{} \end{array} \right. . \end{aligned}$$
(21)

The surface potential (\(\phi _{\text {s}}\)) and slip velocity (\(u_{\text {s}}\)) along the PE–electrolyte interface (i.e., \(y =0\)) can be written as

$$\begin{aligned} \phi _{\text {s}}= \frac{\sigma^* }{\kappa H} \frac{\cosh (\kappa H d_1)}{\sinh \kappa H(1+d_1)}+ \frac{Q_{\text {f}}}{(\kappa H)^2} \frac{\sinh (\kappa Hd_1)\cosh (\kappa H)}{\sinh \kappa H(1+d_1)} \end{aligned}$$
(22)
$$\begin{aligned} u_{\text {s}}={\varLambda }_{\text {s}} \frac{{\text {d}}u_s}{{\text {d}}y}, \end{aligned}$$
(23)

where \({\varLambda }_{\text {s}}=\frac{C_8}{ C_1\left[ \kappa H \sinh (\kappa H d_1)+ \cosh (\kappa H d_1)- \cosh \kappa H (1+d_1) \right] +C_2\left[ \cosh (\kappa H)-\kappa H \sinh (\kappa H)-1 \right] -C_8}\) and

$$\begin{aligned} C_8=C_4-C_5-C_6\cosh (\kappa H d_1)+C_7\cosh (\kappa H d_1). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Bag, N. Enhanced electroosmotic flow and ion selectivity in a channel patterned with periodically arranged polyelectrolyte-filled grooves. Microfluid Nanofluid 23, 46 (2019). https://doi.org/10.1007/s10404-019-2213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-019-2213-2

Keywords

Navigation