Skip to main content
Log in

Pneumatic siphon valving and switching in centrifugal microfluidics controlled by rotational frequency or rotational acceleration

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Air-pressure-mediated, pneumatic siphon valves employ temporary storage and subsequent release of pneumatic energy, exclusively controlled by rotation of the disk. Implementation is easy, and robust valves can be integrated in a monolithic way at minimum additional costs. However, so far, pneumatic siphon valving requires deceleration from high to low rotational frequencies. Valve opening is performed always when the rotation of the disk drops below a critical rotational frequency. To overcome this limitation, we introduce new concepts for pneumatic siphon valving which enable operation of the disk at any rotational frequency without unwanted bursts of the siphon valves. Thus, the design space for pneumatic siphon valves in centrifugal microfluidics is significantly extended. Three types of pneumatic siphon valves are presented with release control at (1) rotational frequencies between 25 and 48 Hz, (2) positive rotational accelerations between 1 and 22 Hz s−1, and (3) negative rotational accelerations between 5 and 20 Hz s−1. Finally, we combine two valve types to realize robust switching into two fluidic paths with flow rate ratios of 94/6 and 0/100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abi-Samra K, Hanson R, Madou M, Gorkin RA (2011) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11(4):723–726. doi:10.1039/c0lc00160k

    Article  Google Scholar 

  • Amasia M, Cozzens M, Madou MJ (2012) Centrifugal microfluidic platform for rapid PCR amplification using integrated thermoelectric heating and ice-valving. Sens Actuators B Chem 161(1):1191–1197. doi:10.1016/j.snb.2011.11.080

    Article  Google Scholar 

  • Burger R, Kirby D, Glynn M, Nwankire C, O'Sullivan M, Siegrist J, Kinahan D, Aguirre G, Kijanka G, Gorkin RA, Ducrée J (2012) Centrifugal microfluidics for cell analysis. Curr Opin Chem Biol 16(3–4):409–414. doi:10.1016/j.cbpa.2012.06.002

    Article  Google Scholar 

  • Chen JM, Huang P, Lin M (2008) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluid 4(5):427–437. doi:10.1007/s10404-007-0196-x

    Article  Google Scholar 

  • Cho H, Kim H, Kang JY, Kim TS (2007) How the capillary burst microvalve works. J Colloid Interface Sci 306(2):379–385. doi:10.1016/j.jcis.2006.10.077

    Article  Google Scholar 

  • Deng Y, Fan J, Zhou S, Zhou T, Wu J, Li Y, Liu Z, Xuan M, Wu Y (2014) Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips. Biomicrofluidics 8(2):024101. doi:10.1063/1.4867241

    Article  Google Scholar 

  • Focke M, Stumpf F, Roth G, Zengerle R, von Stetten F (2010) Centrifugal microfluidic system for primary amplification and secondary real-time PCR. Lab Chip 10(23):3210–3212. doi:10.1039/c0lc00161a

    Article  Google Scholar 

  • Garcia-Cordero JL, Barrett LM, O'Kennedy R, Ricco AJ (2010) Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomed Microdevices 12(6):1051–1059. doi:10.1007/s10544-010-9459-5

    Article  Google Scholar 

  • Godino N, Gorkin R, Linares AV, Burger R, Ducrée J (2013) Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading. Lab Chip 13(4):685–694. doi:10.1039/c2lc40722a

    Article  Google Scholar 

  • Gorkin R, Clime L, Madou M, Kido H (2010) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid 9(2–3):541–549. doi:10.1007/s10404-010-0571-x

    Article  Google Scholar 

  • Gorkin R, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O'Kennedy R, Ducrée J (2012a) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12(16):2894–2902. doi:10.1039/c2lc20973j

    Article  Google Scholar 

  • Gorkin R, Soroori S, Southard W, Clime L, Veres T, Kido H, Kulinsky L, Madou M (2012b) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluid 12(1–4):345–354. doi:10.1007/s10404-011-0878-2

    Article  Google Scholar 

  • Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76:025101

    Article  Google Scholar 

  • Hwang H, Kim H, Cho Y (2011) Elastomeric membrane valves in a disc. Lab Chip 11(8):1434–1436. doi:10.1039/c0lc00658k

    Article  Google Scholar 

  • Hwang H, Kim Y, Cho J, Lee J, Choi M, Cho Y (2013) Lab-on-a-disc for simultaneous determination of nutrients in water. Anal Chem 85(5):2954–2960. doi:10.1021/ac3036734

    Article  Google Scholar 

  • Kazarine A, Kong Matthew C R, Templeton EJ, Salin ED (2012) Automated liquid-liquid extraction by pneumatic recirculation on a centrifugal microfluidic platform. Anal Chem 84(16):6939–6943. doi:10.1021/ac301421k

    Article  Google Scholar 

  • Kinahan DJ, Kearney SM, Dimov N, Glynn MT, Ducrée J (2014) Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms. Lab Chip 14(13):2249–2258. doi:10.1039/c4lc00380b

    Article  Google Scholar 

  • Kong MCR, Bouchard AP, Salin ED (2012) Displacement pumping of liquids radially inward on centrifugal microfluidic platforms in motion. Micromachines 3(4):1–9. doi:10.3390/mi3010001

    Article  Google Scholar 

  • LaCroix-Fralish A, Templeton EJ, Salin ED, Skinner CD (2009) A rapid prototyping technique for valves and filters in centrifugal microfluidic devices. Lab Chip 9(21):3151–3154. doi:10.1039/b908683h

    Article  Google Scholar 

  • Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Müller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, von Stetten F (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10(7):887–893. doi:10.1039/b921140c

    Article  Google Scholar 

  • Mark D, Metz T, Haeberle S, Lutz S, Ducrée J, Zengerle R, von Stetten F (2009) Centrifugo-pneumatic valve for metering of highly wetting liquids on centrifugal microfluidic platforms. Lab Chip 9(24):3599–3603. doi:10.1039/b914415c

    Article  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182. doi:10.1039/b820557b

    Article  Google Scholar 

  • Mark D, Weber P, Lutz S, Focke M, Zengerle R, von Stetten F (2011) Aliquoting on the centrifugal microfluidic platform based on centrifugo-pneumatic valves. Microfluid Nanofluid 10(6):1279–1288. doi:10.1007/s10404-010-0759-0

    Article  Google Scholar 

  • Noroozi Z, Kido H, Peytavi R, Nakajima-Sasaki R, Jasinskas A, Micic M, Felgner PL, Madou MJ (2011) A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics. Rev Sci Instrum 82(6):064303. doi:10.1063/1.3597578

    Article  Google Scholar 

  • Ouyang Y, Wang S, Li J, Riehl PS, Begley M, Landers JP (2013) Rapid patterning of 'tunable' hydrophobic valves on disposable microchips by laser printer lithography. Lab Chip 13(9):1762–1771. doi:10.1039/c3lc41275j

    Article  Google Scholar 

  • Schembri CT, Burd TL, Kopf-Sill AR, Shea LR, Braynin B (1995) Centrifugation and capillarity integrated into a multiple analyte whole blood analyser. J Autom Chem 17(3):99–104

    Article  Google Scholar 

  • Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) A microfluidic timer for timed valving and pumping in centrifugal microfluidics. Lab Chip 15:1545–1553. doi:10.1039/c4lc01269k

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9(1):55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  • Steigert J, Brenner T, Grumann M, Riegger L, Lutz S, Zengerle R, Ducrée J (2007) Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed Microdevices 9(5):675–679. doi:10.1007/s10544-007-9076-0

    Article  Google Scholar 

  • Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev. doi:10.1039/c4cs00371c

    Google Scholar 

  • Ukita Y, Ishizawa M, Takamura Y, Utsumi Y (2012) Internally triggered multistep flow sequencers using clepsydra. In: 16th international conference on miniaturized systems for chemistry and life sciences, pp 1465–1467

  • van Oordt T, Barb Y, Smetana J, Zengerle R, von Stetten F (2013) Miniature stick-packaging–an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 13(15):2888–2892. doi:10.1039/c3lc50404b

    Article  Google Scholar 

  • Vázquez M (2011) Centrifugally-driven sample extraction, preconcentration and purification in microfluidic compact discs. Trends Anal Chem 30(10):1575–1586

    Article  Google Scholar 

  • Zehnle S, Schwemmer F, Roth G, von Stetten F, Zengerle R, Paust N (2012a) Centrifugo-dynamic inward pumping of liquids on a centrifugal microfluidic platform. Lab Chip 12(24):5142–5145. doi:10.1039/c2lc40942a

    Article  Google Scholar 

  • Zehnle S, Rombach M, von Stetten F, Zengerle R, Paust N (2012b) Microfluidic centrifugo-pneumatic siphon enables fast blood plasma extraction with high yield and purity. In: 16th international conference on miniaturized systems for chemistry and life sciences, pp 869–871

  • Zhao Y, Schwemmer F, Zehnle S, von Stetten F, Zengerle R, Paust N (2015) Centrifugo-pneumatic sedimentation, resuspension and transport of microparticles. Lab Chip 15:4133–4137. doi:10.1039/c5lc00508f

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support by the Federal Ministry of Education and Research (BMBF) in the project EasyTube (Project Number 16SV5451K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zehnle.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehnle, S., Schwemmer, F., Bergmann, R. et al. Pneumatic siphon valving and switching in centrifugal microfluidics controlled by rotational frequency or rotational acceleration. Microfluid Nanofluid 19, 1259–1269 (2015). https://doi.org/10.1007/s10404-015-1634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1634-9

Keywords

Navigation