Skip to main content
Log in

Solvent-selective routing for centrifugally automated solid-phase purification of RNA

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a disc-based module for rotationally controlled solid-phase purification of RNA from cell lysate. To this end, multi-stage routing of a sequence of aqueous and organic liquids into designated waste and elution reservoirs is implemented by a network of strategically placed, solvent-selective composite valves . Using a bead-based stationary phase at the entrance of the router, we show that total RNA is purified with high integrity from cultured MCF7 and T47D cell lines, human leucocytes and Haemophilus influenzae cell lysates. Furthermore, we demonstrate the broad applicability of the device through the in vitro amplification of RNA purified on-disc using RT-PCR and NASBA. Our novel router will be at the pivot of a forthcoming, fully integrated and automated sample preparation system for RNA-based analysis .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamo A, Heider PL, Weeranoppanant N, Jensen KF (2013) Membrane-based, liquid–liquid separator with integrated pressure control. Ind Eng Chem Res 31:10802–10808

    Article  Google Scholar 

  • Balladur V, Theretz A, Mandrand B (1997) Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers. J Colloid Interface Sci 2:408–418

    Article  Google Scholar 

  • Boom R, Sol CJ, Salimanas MM, Jansen CL, Wertheim van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microb 28:495–503

    Google Scholar 

  • Brenner T, Glatzel T, Zengerle R, Ducrée J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5:146–150

    Article  Google Scholar 

  • Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 3:155–166

    Google Scholar 

  • Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573

    Article  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Acid three phase phenol-chloroform extraction. Anal Biochem 1:156–159

    Article  Google Scholar 

  • Clancy E, Glynn B, Reddington K, Smith TJ, Barry T (2012) Culture confirmation of Listeria monocytogenes using tmRNA as a diagnostics target. J Microbiol Methods 3:427–435

    Article  Google Scholar 

  • Copois V, Bibeau F, Bascoul-Mollevi C, Salvetat N, Chalbos P, Bareil C, Candeil L, Fraslon C, Conseiller E, Granci V, Maziére P, Kramar A, Ychou M, Pau B, Martineau P, Molina F, Del Rio M (2007) Impact of RNA degradation on gene expression profiles: assessment of different methods to reliably determine RNA quality. J Biotech 127:549–559

    Article  Google Scholar 

  • Duarte GRM, Price CW, Littlewood JL, Haverstick DM, Ferrance JP, Carrilho E, Landers JP (2010) Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads. Analyst 135:531–537

    Article  Google Scholar 

  • Duarte GRM, Price CW, Augustine BH, Carrilho E, Landers JP (2011) Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal Chem 83:5182–5189

    Article  Google Scholar 

  • Ducrée J, Haeberle S, Lutz S, Pausch S, Stetten FV, Zengerle R (2007) The centrifugal microfluidic. Bio-Disk platform J Micromech Microeng 17:103–115

  • Foudeh AM, Fatanat TD, Veres T, Tabrizian M (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 12:3249–3266

    Article  Google Scholar 

  • Garcia-Cordero JL, Basabe-Desmonts L, Ducrée J, Ricco AJ (2010) Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluidics Nanofluidics 9:695–703

    Article  Google Scholar 

  • Gorkin R III, Nwankire CE, Gaughran J, Zhang J, Donohoe GG, Rock M, O’Kennedy R, Ducrée J (2012) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12:2894–2902

    Article  Google Scholar 

  • Haeberle S, Pausch S, Burger R, Lutz S, von Stetten JDF, Zengerle R (2007) Automation of nucleic acid extraction by a Coriolis-force actuated droplet router. In: \(\mu\)TAS Proceedings, pp 1231–1233

  • Hagan KA, Meier WL, Ferrance JP, Landers JP (2009) Chitosan-coated silica as a solid phase for RNA purification in a microfluidic device. Anal Chem 81:5249–5256

    Article  Google Scholar 

  • Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 7:673–682

    Article  Google Scholar 

  • Hiorns LR, Bradshaw TD, Skeleton LA, Yu Q, Kelland LR, Leyland-Jones B (2004) Variation in RNA expression and genomic DNA content acquired during cell culture. Brit J Cancer 90:476–482

    Article  Google Scholar 

  • Huggett JF, Novak T, Garson J, Green C, Morris-Jones SD, Miller RF, Zumla A (2008) Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res Notes 1:70

    Article  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA involvement in human cancer. Carcinogenesis 33:1126–1133

    Article  Google Scholar 

  • Jung JH, Park BH, Choi YK, Seo TS (2013) A microbead incorporated centrifugal sample pretreatment microdevice. Lab Chip 13:3383–3388

    Article  Google Scholar 

  • Katcher HL, Schwartz I (1994) A distinctive property of Taq DNA polymerase: enzymatic amplification in the presence of phenol. Bio Tech 1:84–92

    Google Scholar 

  • Kim J, Hee Jang S (2004) Cell lysis on a microfluidic CD (compact disc). Lab Chip 5:516–522

    Article  Google Scholar 

  • Kim J, Kido H, Rangel RH, Madou MJ (2008) Passive flow switching valves on a centrifugal microfluidic platform. Sens Actu B Chem 2:613–621

    Article  Google Scholar 

  • Kim J, Johnson M, Hill P, Gale BK (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol Quant Biosci From Nano To Macro 1:574–586

    Article  Google Scholar 

  • Kinahan DJ, Kearney SM, Dimov N, Glynn MT, Ducrée J (2014) Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms. Lab Chip. doi:10.1039/C4LC00380B

    Google Scholar 

  • Kloke A, Fiebach AR, Zhang S, Drechsel L, Niekrawietz S, Hoehl MM, Kneusel R, Panthel K, Steigert J, von Stetten F, Zengerle R, Paust N (2014) The LabTube-a novel microfluidic platform for assay automation in laboratory centrifuges. Lab Chip 9:1527–1537

    Article  Google Scholar 

  • Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092

    Article  Google Scholar 

  • Lee BS, Lee JN, Park JM, Lee JG, Kim S, Cho YK (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555

    Article  Google Scholar 

  • Lee BS, Lee YU, Kim HS, Kim TH, Park J, Lee JG, Kim J, Kim H, Lee WG, Cho YK (2011) Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11:70–78

    Article  Google Scholar 

  • Linares AV, Gorkin R III, Glynn B, Godino N, Miller N, Kerin M, Barry T, Smith TJ, Ducrée J (2011) Purification of miRNA from whole blood by chemical lysis and phase separation in a centrifugo-pneumatic micro-homogenizer. In: \(\mu\)TAS Proceedings, pp 1460–1462

  • Madou MJ, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Ann Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Mark D, Haeberle S, Metz T, Lutz S, Ducrée J, Zengerle R, Stetten FV (2008) Aliquoting structure for centrifugal microfluidics. In: MEMS Proceedings, pp 11–14

  • McCalla SE, Tripathi A (2011) Microfluidic reactors for diagnostics applications. Ann Rev Biomed Eng 13:321–343

    Article  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Nat Acad Sci USA 50:10513–10521

    Article  Google Scholar 

  • Nwankire CE, Donohoe GG, Zhang X, Siegrist J, Somers M, Kurzbuch D, Monaghan R, Kitsara M, Burger R, Hearty S, Murrell J, Martin C, Rock M, Barret L, Daniels S, McDonagh C, O’Kennedy R, Ducrée J (2013) At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics. Anal Chem Acta 781:54–62

    Article  Google Scholar 

  • O’Grady J, Lacey K, Glynn B, Smith TJ, Barry T, Maher M (2009) tmRNA-a novel high-copy-number RNA diagnostic target-its application for Staphylococcus aureus detection using real-time NASBA. FEMS Microbiol Lett 2:218–223

    Article  Google Scholar 

  • Park JM, Cho YK, Lee BS, Lee JG, Ko C (2007) Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab Chip 7:557–564

    Article  Google Scholar 

  • Park BH, Jung JH, Zhang H, Lee NY, Seo TS (2012) A rotary microsystem for simple, rapid and automatic RNA purification. Lab Chip 12:3875–3881

    Article  Google Scholar 

  • Park J, Sunkara V, Kim TH, Hwang H, Cho YK (2012) Lab-on-a-disc for fully integrated multiplex immunoassays. Anal Chem 84:2133–2140

    Article  Google Scholar 

  • Schembri CT, Burd TL, Kopf-Sill AR, Shea LR, Braynin B (1995) Centrifugation and capillarity integrated into a multiple analyte whole blood analyser. J Autom Chem 17:99–104

    Article  Google Scholar 

  • Schroeder A, Mueller O, Stoccker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Regg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  Google Scholar 

  • Steigert J, Brenner T, Grumman M, Riegger L, Lutz S, Zengerle R, Ducrée J (2007) Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed Microdev 9:675–679

    Article  Google Scholar 

  • Summerer D, Marx A (2002) A molecular beacon for quantitative monitoring of the DNA polymerase reaction in real-time. Angew Chem Int Ed 19:3620–3622

    Article  Google Scholar 

  • Tam MF, Dodd JA, Hill WE (1981) Physical characteristics of 16S rRNA under reconstitution conditions. J Biol Chem 12:6430–6434

    Google Scholar 

  • Tan SC, Yiap BC (2009) DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol 1–10. Article ID 574398. doi:10.1155/2009/574398

  • Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29:151–159

    Article  Google Scholar 

  • van Oordt T, Barb Y, Smetana J, Zengerle R, von Stetten F (2013) Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 15:2888–2892

    Article  Google Scholar 

  • Wen J, Legendre L, Bienvenue JM, Landers JP (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80:6472–6479

    Article  Google Scholar 

  • Zehnle S, Schwemmer F, Roth G, von Stetten F, Zengerle R, Paust N (2012) Centrifugo-dynamic inward pumping of liquids on a centrifugal microfluidic platform. Lab Chip 24:5142–5145

    Article  Google Scholar 

  • Zhao X, Dong T, Yang Z, Pires N, Høivik N (2012) Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: design and validation. Lab Chip 12:602–612

    Article  Google Scholar 

  • Zoval J, Madou MJ (2004) Centrifuge-based fluidic platforms. IEEE Proc 92:140–153

Download references

Acknowledgments

This work was supported by the Science Foundation Ireland under Grant 10/CE/B1821. Jennifer Gaughran was funded through BioAnalysis and Therapeutics Structured Ph.D. Programme (Bio-AT) by HEA-PRTLI V. The authors also thank Prof. Richard O’Kennedy’s group in Dublin City University for allowing us to use their cell culture facilities. We would also like to thank Karsten Holona and her team in Harke PackPro for providing dissolvable films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Dimov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 23830 KB)

Supplementary material 2 (pdf 867 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimov, N., Clancy, E., Gaughran, J. et al. Solvent-selective routing for centrifugally automated solid-phase purification of RNA. Microfluid Nanofluid 18, 859–871 (2015). https://doi.org/10.1007/s10404-014-1477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1477-9

Keywords

Navigation