Skip to main content
Log in

Particle inertial focusing and its mechanism in a serpentine microchannel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Particle inertial focusing in a curved channel promises a big potential for lab-on-a-chip applications. This focusing concept is usually based on the balance of inertial lift force and the drag of secondary flow. This paper proposes a new focusing concept independent of inertial lift force, relying solely on secondary flow drag and particle centrifugal force. Firstly, a focusing mechanism in a serpentine channel is introduced, and some design considerations are described in order to make the proposed focusing concept valid. Then, numerical modelling based on the proposed focusing mechanism is conducted, and the numerical results agree well with the experimental ones, which verify the rationality of proposed mechanism. Thirdly, the effects of flow condition and particle size on the focusing performance are studied. The effect of particle centrifugal force on particle focusing in a serpentine microchannel is carefully evaluated. Finally, the speed of focussed particles at the outlet is measured by a micro-PIV, which further certifies the focusing positions of particles within the cross section. Our study provides insights into the role of centrifugal force on inertial focusing. This paper demonstrates for the first time that a single focusing streak can be achieved in a symmetric serpentine channel. The simple serpentine microchannel can easily be implemented in a single-layer microfluidic device. No sheath flow or external force field is needed allowing a simple operation in a more complex lab-on-a-chip system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    Article  MATH  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluid 7(2):217–226

    Article  Google Scholar 

  • Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010a) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I (2010b) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdevices 12(2):187–195

    Article  Google Scholar 

  • Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18):2410–2427

    Article  Google Scholar 

  • Chung AJ, Gossett DR, Di Carlo D (2013) Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows. Small 9(5):685–690

    Article  Google Scholar 

  • Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LWMM (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA 104(48):18892

    Article  Google Scholar 

  • Di Carlo D, Jon F, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80(6):2204–2211

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70(23):4974–4984

    Article  Google Scholar 

  • Eisenstein M (2006) Cell sorting: divide and conquer. Nature 441(7097):1179–1185

    Article  Google Scholar 

  • Forbes TP, Forry SP (2012) Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 12(8):1471–1479

    Article  Google Scholar 

  • Gossett DR, Carlo DD (2009) Particle focusing mechanisms in curving confined flows. Anal Chem 81(20):8459–8465

    Article  Google Scholar 

  • Hansson J, Karlsson JM, Haraldsson T, Brismar H, van der Wijngaart W, Russom A (2012) Inertial microfluidics in parallel channels for high-throughput applications. Lab Chip 12:4644–4650

    Article  Google Scholar 

  • Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS-W, Lim W-T, Han J, Bhagat AAS, Lim CT (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259

    Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Article  Google Scholar 

  • Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280

    Article  Google Scholar 

  • Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L (2008) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10(2):251–257

    Article  Google Scholar 

  • Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980

    Article  Google Scholar 

  • Lee MG, Choi S, Park JK (2009a) Rapid laminating mixer using a contraction–expansion array microchannel. Appl Phys Lett 95(5):051902–051903

    Article  Google Scholar 

  • Lee MG, Choi S, Park JK (2009b) Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 9:3155–3160

    Article  Google Scholar 

  • Lee MG, Choi S, Kim HJ, Lim HK, Kim JH, Huh N, Park JK (2011a) Inertial blood plasma separation in a contraction–expansion array microchannel. Appl Phys Lett 98(25):253702–253703

    Article  Google Scholar 

  • Lee WC, Bhagat AAS, Huang S, Van Vliet KJ, Han J, Lim CT (2011b) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11:1359–1367

    Article  Google Scholar 

  • Lim DSW, Shelby JP, Kuo JS, Chiu DT (2003) Dynamic formation of ring-shaped patterns of colloidal particles in microfluidic systems. Appl Phys Lett 83(6):1145–1147

    Article  Google Scholar 

  • Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11:2827–2834

    Article  Google Scholar 

  • Martel JM, Toner M (2012) Inertial focusing dynamics in spiral microchannels. Phys Fluids 24:032001

    Article  Google Scholar 

  • Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S, Jung HI (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11:1118–1125

    Article  Google Scholar 

  • Oakey J, Applegate RW Jr, Arellano E, Carlo DD, Graves SW, Toner M (2010) Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal Chem 82(9):3862–3867

    Article  Google Scholar 

  • Oozeki N, Ookawara S, Ogawa K, Löb P, Hessel V (2009) Characterization of microseparator/classifier with a simple arc microchannel. AIChE J 55(1):24–34

    Article  Google Scholar 

  • Park JS, Song SH, Jung HI (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9:939–948

    Article  Google Scholar 

  • Richardson JF, Coulson JM, Harker J, Backhurst J (2002) Chemical Engineering: Particle technology and separation processes, vol 2. Butterworth-Heinemann, London

    Google Scholar 

  • Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11(7):075025

    Article  Google Scholar 

  • Segre G (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  • Segre G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J Fluid Mech 14(01):136–157

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007a) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91(3):033901–033903

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007b) Membraneless microseparation by asymmetry in curvilinear laminar flows. J Chromatogr A 1162(2):126–131

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647

    Article  Google Scholar 

  • Sudarsan AP, Ugaz VM (2006) Multivortex micromixing. Proc Natl Acad Sci USA 103(19):7228–7233

    Article  Google Scholar 

  • Vermes I, Weitz DA, van den Berg A (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12:2881–2887

    Article  Google Scholar 

  • Wang Z, Zhe J (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11:1280–1285

    Article  Google Scholar 

  • Wu L, Guan G, Hou HW, Bhagat AAS, Han J (2012) Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal Chem 84(21):9324–9331

    Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471

    Article  Google Scholar 

  • Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS (2008) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9:87–90

    Article  Google Scholar 

  • Zhang J, Li M, Li WH, Alici G (2013) Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows. J Micromech Microeng 23(8):085023

    Article  Google Scholar 

  • Zheng Z, Fletcher DF, Haynes BS (2013) Laminar heat transfer simulations for periodic zigzag semicircular channels: chaotic advection and geometric effects. Int J Heat Mass Transf 62:391–401

    Article  Google Scholar 

  • Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13:1121–1132

    Article  Google Scholar 

  • Zhu J, Tzeng T-RJ, Hu G, Xuan X (2009) DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid 7(6):751–756

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the University of Wollongong through a UIC grant and China Scholarship Council. The authors thank Professor Dino Di Carlo, University of California, Los Angeles, for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Li or Nam-Trung Nguyen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2797 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, W., Li, M. et al. Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluid Nanofluid 17, 305–316 (2014). https://doi.org/10.1007/s10404-013-1306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1306-6

Keywords

Navigation