Skip to main content
Log in

Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This article presents the detailed analysis of nanofluidics as a mechanism for the delivery of residual vapour/gas molecules in the air to nanoscale apertures in a porous metal or composite membrane with surface plasmons producing field hotspots near the apertures. Finite element analysis is used to calculate and to optimise the flow rate of air through apertures of different diameters with partial slip boundary conditions. Comparison of the calculated nanofluidic delivery rates with those due to diffusion of the tested residual molecules in the air is also conducted. Typical structural and material parameters at which either of these delivery mechanisms appears dominant are determined. Ways for further optimisation and enhancement of the operational capabilities of the described structures as nano-optical sensors and measurement techniques are also identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anema JR, Brolo AG, Marthandam P, Gordon R (2008) Enhanced Raman scattering from nanoholes in a copper film. J Phys Chem C 112(44):17051–17055

    Article  Google Scholar 

  • Aubert C, Colin S (2001) High-order boundary conditions for gaseous flows in rectangular microducts. Microscale Thermophys Eng 5(1):41–54

    Article  Google Scholar 

  • Barber RW, Emerson DR (2006) Challenges in modeling gas-phase flow in microchannels: from slip to transition. Heat Trans Eng 27:3–12

    Article  Google Scholar 

  • Beskok A, Karniadakis GE (1994) Simulation of heat and momentum transfer in complex microgeometries. J Thermophys Heat Transf 8(4):647–655

    Article  Google Scholar 

  • Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1(3):438–483

    Article  Google Scholar 

  • Bozhevolnyi SI, Søndergaard T (2007) General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 15(17):10869–10877

    Article  Google Scholar 

  • Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004a) Nanohole-enhanced Raman scattering. Nano Lett 4(10):2015–2018

    Article  Google Scholar 

  • Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004b) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813–4815

    Article  Google Scholar 

  • Brolo AG, Gordon R, Kavanagh K, Sinton D (2005) The development of surface-plasmon-based sensors using arrays of sub-wavelength holes. In: Nanofabrication: technologies, devices, and applications II. Proceedings of SPIE, vol 6002, p 600207

  • Brolo AG, Ferreira J, Santos MJL, Escobedo C, Sinton D, Girotto EM, Eftekhari F, Gordon R (2008) Development of plasmonic substrates for biosensing. In: Biosensing. Proceedings of SPIE, vol 7035, p 703503

  • Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: resonators for local field enhancement. J Appl Phys 94(7):4632–4642

    Article  Google Scholar 

  • Cussler EL (1984) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669

    Article  Google Scholar 

  • Eftekhari F, Escobedo C, Ferreira J, Wood P, Gordon R, Brolo AG, Sinton D (2008) Biaxial nanohole array sensing and optofluidic integration. In: 2008 Digest of the IEEE/LEOS Summer Topical Meetings, pp 185–186

  • Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311

    Article  Google Scholar 

  • Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020

    Article  Google Scholar 

  • Fish BR, Durham JL (1971) Diffusion coefficient of SO2 in air. Environ Lett 2(1):13–21

    Article  Google Scholar 

  • Gramotnev DD, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nature Photon 4:83–91

    Article  Google Scholar 

  • Gramotnev DK, Vogel MW (2011) Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing. Phys Lett A 375(39):3464–3468

    Article  Google Scholar 

  • Gramotnev DK, Vogel MW, Stockman MI (2008) Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J Appl Phys 104(3):034311

    Article  Google Scholar 

  • Gramotnev DK, Pors A, Willatzen M, Bozhevolnyi SI (2012) Gap-plasmon nanoantennas and bowtie resonators. Phys Rev B 85(4):045434

    Article  Google Scholar 

  • Jacobson MZ (1999) Fundamentals of atmospheric modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Jang J, Wereley ST (2006) Effective heights and tangential momentum accommodation coefficients of gaseous slip flows in deep reactive ion etching rectangular microchannels. J Micromech Microeng 16:493–504

    Article  Google Scholar 

  • Jung J, Søndergaard T, Bozhevolnyi SI (2009) Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons. Phys Rev B 79(3):035401

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru NR (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Kobryn AE, Kovalenko A (2008) Molecular theory of hydrodynamic boundary conditions in nanofluidics. J Chem Phys 129(13):134701

    Article  Google Scholar 

  • Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686

    Article  Google Scholar 

  • Lezec H, Thio T (2004) Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt Express 12(16):3629–3651

    Article  Google Scholar 

  • Li Q, Yang Z, Ren B, Xu H, Tian Z (2010) The relationship between extraordinary optical transmission and surface-enhanced Raman scattering in subwavelength metallic nanohole arrays. J Nanosci Nanotechnol 10(11):7188–7191

    Article  Google Scholar 

  • Lin L, Roberts A (2009) Angle-robust resonances in cross-shaped aperture arrays. Appl Phys Lett 97(6):061109

    Article  Google Scholar 

  • Lindquist NC, Lesuffleur A, Im H, Sang-Hyun O (2009) Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 9(3):382–387

    Article  Google Scholar 

  • Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452(7188):728–731

    Article  Google Scholar 

  • Massman WJ (1998) A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmos Environ 32(6):1111–1127

    Article  Google Scholar 

  • Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308(5728):1607–1609

    Article  Google Scholar 

  • Nambayah M, Quickenden TI (2004) A quantitative assessment of chemical techniques for detecting traces of explosives at counter-terrorist portals. Talanta 63(2):461–467

    Article  Google Scholar 

  • Nishijima Y, Nigorinuma H, Rosa L, Juodkazis S (2012) Selective enhancement of infrared absorption with metal hole arrays. Opt Mater Express 2(10):1367–1377

    Article  Google Scholar 

  • Novotny L, van Hulst N (2011) Antennas for light. Nat Photon 5(2):83–90

    Article  Google Scholar 

  • Popov E, Enoch S, Tayeb G, Nevière M, Gralak B, Bonod N (2004) Enhanced transmission due to nonplasmon resonances in one- and two-dimensional gratings. Appl Opt 43(5):999–1008

    Article  Google Scholar 

  • Roohi E, Darbandi M (2009) Extending the Navier–Stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme. Phys of Fluids 21(8):082001

    Article  Google Scholar 

  • Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry, Springer, Berlin, pp 195–234

  • Selcuk S, Woo K, Tanner DB, Hebard AF, Borisov AG, Shabanov SV (2006) Trapped electromagnetic modes and scaling in the transmittance of perforated metal films. Phys Rev Lett 97(6):067403

    Article  Google Scholar 

  • Sinton D, Gordon R, Brolo AG (2008) Nanohole arrays in metal films as optofluidic elements: progress and potential. Microfluid Nanofluid 4(1–2):107–116

    Article  Google Scholar 

  • Søndergaard T, Beermann J, Boltasseva A, Bozhevolnyi SI (2008) Slow-plasmon resonant-nanostrip antennas: analysis and demonstration. Phys Rev B 77(11):115420

    Article  Google Scholar 

  • Søndergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2010) Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett 10(1):291–295

    Article  Google Scholar 

  • Sundaramurthy A, Crozier KB, Kino GS, Fromm DP, Schuck PJ, Moerner WE (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys Rev B 72(16):165409

    Article  Google Scholar 

  • Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, van Rijn CJM, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4(2):283–287

    Article  Google Scholar 

  • van Rijn C, van der Wekken M, Nijdam W, Elwenspoek M (1997) Deflection and maximum load of microfiltration membrane sieves made with silicon micromachining. J Microelectromech Syst 6(1):48–54

    Article  Google Scholar 

  • White I, Yazdi S, Yu W (2012) Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis. Microfluid Nanofluid 13(2):205–216

    Article  Google Scholar 

  • Yanik AA, Min H, Artar A, Tsung-Yao C, Altug H (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96:021101

    Article  Google Scholar 

  • Yu Q, Golden G (2007) Probing the protein orientation on charged self-assembled monolayers on gold nanohole arrays by sers. Langmuir 23(17):8659–8662

    Article  Google Scholar 

  • Yu L, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Australian Research Council (Linkage Grant LP0882614), Australian Federal Police Forensic Services, and National Institute of Forensic Sciences. The authors also acknowledge the support and technical help of the High Performance Computing Division at the Queensland University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri K. Gramotnev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurth, M.L., Gramotnev, D.K. Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes. Microfluid Nanofluid 14, 743–751 (2013). https://doi.org/10.1007/s10404-012-1093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1093-5

Keywords

Navigation