Skip to main content

Nano-in-Nano Integration Technology for Advanced Fabrication of Functional Nanofluidic Devices

  • Chapter
  • First Online:
Advanced MEMS/NEMS Fabrication and Sensors

Abstract

In this chapter, Nano-in-Nano Integration was introduced as the progress of functional nanofluidic devices. Most contemporary nanofluidic devices use bare nanochannels without functional components, which limits their nanofluidic application. Nano-in-Nano fabrication technologies have been proposed as a solution, which includes the subtractive method using the focus ion beam and the additive method using multiple electron beam lithography. Nanocomponents with different functions, such as arrays, valves, and electrodes, have been integrated into nanochannels, as proof-of-concept studies, which can be envisioned to offer a new angle for the advanced fabrication of functional nanofluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abgrall, P., & Nguyen, N. T. (2008). Nanofluidic devices and their applications. Analytical Chemistry, 80(7), 2326–2341.

    Article  Google Scholar 

  • Abgrall, P., Low, L. N., & Nguyen, N. T. (2007). Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab on a Chip, 7(4), 520–522.

    Article  Google Scholar 

  • Arayanarakool, R., Shui, L., Van Den Berg, A., & Eijkel, J. C. T. (2011). A new method of UV-patternable hydrophobization of micro- and nanofluidic networks. Lab on a Chip, 11(24), 4260–4266.

    Article  Google Scholar 

  • Au, A. K., Lai, H., Utela, B. R., & Folch, A. (2011). Microvalves and micropumps for BioMEMS. Micromachines, 2, 179–220.

    Article  Google Scholar 

  • Bocquet, L., & Tabeling, P. (2014). Physics and technological aspects of nanofluidics. Lab on a Chip, 14(17), 3143–3158.

    Article  Google Scholar 

  • Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S. B., Krstic, P. S., Lindsay, S., Ling, X. S., Mastrangelo, C. H., Meller, A., Oliver, J. S., Pershin, Y. V., Ramsey, J. M., … Schloss, J. A. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26(10), 1146–1153.

    Article  Google Scholar 

  • Cao, W., Wang, J., & Ma, M. (2018). Mechano-nanofluidics: Water transport through CNTs by mechanical actuation. Microfluidics and Nanofluidics, 22(11), 1–10.

    Article  Google Scholar 

  • Chantiwas, R., Hupert, M. L., Pullagurla, S. R., Balamurugan, S., Tamarit-López, J., Park, S., Datta, P., Goettert, J., Cho, Y. K., & Soper, S. A. (2010). Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab on a Chip, 10(23), 3255–3264.

    Article  Google Scholar 

  • Duan, C., Wang, W., & Xie, Q. (2013). Review article: Fabrication of nanofluidic devices. Biomicrofluidics, 7(2), 026507.

    Article  Google Scholar 

  • Faez, S., Orrit, M., Lahini, Y., Weidlich, S., Weidlich, S., Wondraczek, K., Zeisberger, M., Schmidt, M. A., Garmann, R. F., Manoharan, V. N., & Schmidt, M. A. (2015). Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano, 9(12), 12349–12357.

    Article  Google Scholar 

  • Friedrich, R., Block, S., Alizadehheidari, M., Heider, S., Fritzsche, J., Esbjörner, E. K., Westerlund, F., & Bally, M. (2017). A nano flow cytometer for single lipid vesicle analysis. Lab on a Chip, 17(5), 830–841.

    Article  Google Scholar 

  • Frykholm, K., Alizadehheidari, M., Fritzsche, J., Wigenius, J., Modesti, M., Persson, F., & Westerlund, F. (2014). Probing physical properties of a DNA-protein complex using nanofluidic channels. Small, 10(5), 884–887.

    Article  Google Scholar 

  • Guo, S., Meshot, E. R., Kuykendall, T., Cabrini, S., & Fornasiero, F. (2015). Nanofluidic transport through isolated carbon nanotube channels: Advances, controversies, and challenges. Advanced Materials, 27(38), 5726–5737.

    Article  Google Scholar 

  • Harms, Z. D., Haywood, D. G., Kneller, A. R., & Jacobson, S. C. (2015a). Conductivity-based detection techniques in nanofluidic devices. Analyst, 140(14), 4779–4791.

    Article  Google Scholar 

  • Harms, Z. D., Haywood, D. G., Kneller, A. R., Selzer, L., Zlotnick, A., & Jacobson, S. C. (2015b). Single-particle electrophoresis in nanochannels. Analytical Chemistry, 87(1), 699–705.

    Article  Google Scholar 

  • Harms, Z. D., Selzer, L., Zlotnick, A., & Jacobson, S. C. (2015c). Monitoring assembly of virus capsids with nanofluidic devices. ACS Nano, 9(9), 9087–9096.

    Article  Google Scholar 

  • Hatsuki, R., Yujiro, F., & Yamamoto, T. (2013). Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy. Microfluidics and Nanofluidics, 14(6), 983–988.

    Article  Google Scholar 

  • Haywood, D. G., Saha-Shah, A., Baker, L. A., & Jacobson, S. C. (2015). Fundamental studies of nanofluidics: Nanopores, nanochannels, and nanopipets. Analytical Chemistry, 87(1), 172–187.

    Article  Google Scholar 

  • He, Y., Tsutsui, M., Fan, C., Taniguchi, M., & Kawai, T. (2011). Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano, 5(7), 5509–5518.

    Article  Google Scholar 

  • Holt, J. K. (2009). Carbon nanotubes and nanofluidic transport. Advanced Materials, 21(35), 3542–3550.

    Article  Google Scholar 

  • Kamai, H., & Xu, Y. (2021). Fabrication of ultranarrow nanochannels with ultrasmall nanocomponents in glass substrates. Micromachines, 12(7), 775.

    Article  Google Scholar 

  • Kim, S. J., Song, Y. A., & Han, J. (2010). Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory, fabrication, and applications. Chemical Society Reviews, 39(3), 912–922.

    Article  Google Scholar 

  • Kim, Y., Kim, K. S., Kounovsky, K. L., Chang, R., Jung, G. Y., Depablo, J. J., Jo, K., & Schwartz, D. C. (2011). Nanochannel confinement: DNA stretch approaching full contour length. Lab on a Chip, 11(10), 1721–1729.

    Article  Google Scholar 

  • Kim, M., Ha, D., & Kim, T. (2015). Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications. Nature Communications, 6, 1–8.

    Google Scholar 

  • Kim, D. J., Ha, D., Zhou, Q., Thokchom, A. K., Lim, J. W., Lee, J., Park, J. G., & Kim, T. (2017). A cracking-assisted micro-/nanofluidic fabrication platform for silver nanobelt arrays and nanosensors. Nanoscale, 9(27), 9622–9630.

    Article  Google Scholar 

  • Kneller, A. R., Haywood, D. G., & Jacobson, S. C. (2016). AC electroosmotic pumping in nanofluidic funnels. Analytical Chemistry, 88(12), 6390–6394.

    Article  Google Scholar 

  • Kovarik, M. L., & Jacobson, S. C. (2009). Nanofluidics in lab-on-a-chip devices. Analytical Chemistry, 81(17), 7133–7140.

    Article  Google Scholar 

  • Kudr, J., Skalickova, S., Nejdl, L., Moulick, A., Ruttkay-Nedecky, B., Adam, V., & Kizek, R. (2015). Fabrication of solid-state nanopores and its perspectives. Electrophoresis, 36(19), 2367–2379.

    Article  Google Scholar 

  • Lee, Y. S., Bhattacharjee, N., & Folch, A. (2018). 3D-printed quake-style microvalves and micropumps. Lab on a Chip, 18(8), 1207–1214.

    Article  Google Scholar 

  • Lin, L., Mawatari, K., Morikawa, K., Pihosh, Y., Yoshizaki, A., & Kitamori, T. (2017). Micro/extended-nano sampling interface from a living single cell. Analyst, 142(10), 1689–1696.

    Article  Google Scholar 

  • Lin, L., Chen, Q., & Sun, J. (2018). Micro/nanofluidics-enabled single-cell biochemical analysis. TrAC Trends in Analytical Chemistry, 99, 66–74.

    Article  Google Scholar 

  • Liu, S., Pu, Q., Gao, L., Korzeniewski, C., & Matzke, C. (2005). From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Letters, 5(7), 1389–1393.

    Article  Google Scholar 

  • Louër, A. C., Plecis, A., Pallandre, A., Galas, J. C., Estevez-Torres, A., & Haghiri-Gosnet, A. M. (2013). Pressure-assisted selective preconcentration in a straight nanochannel. Analytical Chemistry, 85(16), 7948–7956.

    Article  Google Scholar 

  • Mao, P., & Han, J. (2005). Fabrication and characterization of 20 Nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab on a Chip, 5(8), 837–844.

    Article  Google Scholar 

  • Marie, R., & Kristensen, A. (2012). Nanofluidic devices towards single DNA molecule sequence mapping. Journal of Biophotonics, 5(8–9), 673–686.

    Article  Google Scholar 

  • Mawatari, K., Kubota, S., Xu, Y., Priest, C., Sedev, R., Ralston, J., & Kitamori, T. (2012). Femtoliter droplet handling in nanofluidic channels: A Laplace nanovalve. Analytical Chemistry, 84(24), 10812–10816.

    Article  Google Scholar 

  • Mawatari, K., Kazoe, Y., Shimizu, H., Pihosh, Y., & Kitamori, T. (2014). Extended-nanofluidics: Fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices. Analytical Chemistry, 86(9), 4068–4077.

    Article  Google Scholar 

  • Mawatari, K., Koreeda, H., Ohara, K., Kohara, S., Yoshida, K., Yamaguchi, T., & Kitamori, T. (2018). Nano X-ray diffractometry device for nanofluidics. Lab on a Chip, 18(8), 1259–1264.

    Article  Google Scholar 

  • Menard, L. D., & Ramsey, J. M. (2011). Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Letters, 11(2), 512–517.

    Article  Google Scholar 

  • Mijatovic, D., Eijkel, J. C. T., & Van Den Berg, A. (2005). Technologies for nanofluidic systems: Top-down vs. bottom-up—A review. Lab on a Chip, 5(5), 492–500.

    Article  Google Scholar 

  • Mokkapati, V. R. S. S., Di Virgilio, V., Shen, C., Mollinger, J., Bastemeijer, J., & Bossche, A. (2011). DNA tracking within a nanochannel: Device fabrication and experiments. Lab on a Chip, 11(16), 2711–2719.

    Article  Google Scholar 

  • Mukhopadhyay, R. (2005). When microfluidic devices go bad. Analytical Chemistry, 77(21), 429a–432a.

    Article  Google Scholar 

  • Mukhopadhyay, R. (2006). What does nanofluidics have to offer? Analytical Chemistry, 78(21), 7379–7382.

    Article  Google Scholar 

  • Napoli, M., Eijkel, J. C. T., & Pennathur, S. (2010). Nanofluidic technology for biomolecule applications: A critical review. Lab on a Chip, 10(8), 957–985.

    Article  Google Scholar 

  • Ouyang, H., Xia, Z., & Zhe, J. (2010). Voltage-controlled flow regulating in nanofluidic channels with charged polymer brushes. Microfluidics and Nanofluidics, 9(4–5), 915–922.

    Article  Google Scholar 

  • Öz, R., Kk, S., & Westerlund, F. (2019). A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level. Nanoscale, 11(4), 2071–2078.

    Article  Google Scholar 

  • Paik, K., Liu, Y., Tabard-cossa, V., Waugh, M. J., Huber, D. E., Provine, J., Howe, R. T., Dutton, R. W., & Davis, R. W. (2012). Control of DNA capture by nanofluidic transistors. ACS Nano, 6(8), 6767–6775.

    Article  Google Scholar 

  • Park, Y. S., Oh, J. M., & Cho, Y. K. (2018). Non-lithographic nanofluidic channels with precisely controlled circular cross sections. RSC Advances, 8(35), 19651–19658.

    Article  Google Scholar 

  • Peng, R., & Li, D. (2016). Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. Lab on a Chip, 16(19), 3767–3776.

    Article  Google Scholar 

  • Perry, J. L., & Kandlikar, S. G. (2006). Review of fabrication of nanochannels for single phase liquid flow. Microfluidics and Nanofluidics, 2(3), 185–193.

    Article  Google Scholar 

  • Perry, J. M., Zhou, K., Harms, Z. D., & Jacobson, S. C. (2010). Ion transport in nanofluidic funnels. ACS Nano, 4(7), 3897–3902.

    Article  Google Scholar 

  • Persson, F., Fritzsche, J., Mir, K. U., Modesti, M., Westerlund, F., & Tegenfeldt, J. O. (2012). Lipid-based passivation in nanofluidics. Nano Letters, 12(5), 2260–2265.

    Article  Google Scholar 

  • Piruska, A., Branagan, S. P., Minnis, A. B., Wang, Z., Cropek, D. M., Sweedler, J. V., & Bohn, P. W. (2010a). Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices. Lab on a Chip, 10(10), 1237–1244.

    Article  Google Scholar 

  • Piruska, A., Gong, M., Sweedler, J. V., & Bohn, P. W. (2010b). Nanofluidics in chemical analysis. Chemical Society Reviews, 39(3), 1060–1072.

    Article  Google Scholar 

  • Poddar, A., Maity, D., Bandopadhyay, A., & Chakraborty, S. (2016). Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter, 12(27), 5968–5978.

    Article  Google Scholar 

  • Prakash, S., Piruska, A., Gatimu, E. N., Bohn, P. W., Sweedler, J. V., & Shannon, M. A. (2008). Nanofluidics: Systems and applications. IEEE Sensors Journal, 8(5), 441–450.

    Article  Google Scholar 

  • Rassaei, L., Mathwig, K., Kang, S., Heering, H. A., & Lemay, S. G. (2014). Integrated biodetection in a nanofluidic device. ACS Nano, 8(8), 8278–8284.

    Article  Google Scholar 

  • Rauscher, M., & Dietrich, S. (2008). Wetting phenomena in nanofluidics. Annual Review of Materials Research, 38, 143–172.

    Article  Google Scholar 

  • Shirai, K., Mawatari, K., & Kitamori, T. (2014). Extended nanofluidic immunochemical reaction with femtoliter sample volumes. Small, 10(8), 1514–1522.

    Article  Google Scholar 

  • Shirai, K., Mawatari, K., Ohta, R., Shimizu, H., & Kitamori, T. (2018). A single-molecule ELISA device utilizing nanofluidics. Analyst, 143(4), 943–948.

    Article  Google Scholar 

  • Sparreboom, W., Van Den Berg, A., & Eijkel, J. C. T. (2009). Principles and applications of nanofluidic transport. Nature Nanotechnology, 4(11), 713–720.

    Article  Google Scholar 

  • Sui, X., Zhang, Z., Zhang, Z., Wang, Z., Li, C., Yuan, H., Gao, L., Wen, L., Fan, X., Yang, L., Zhang, X., & Jiang, L. (2016). Biomimetic nanofluidic diode composed of dual amphoteric channels maintains rectification direction over a wide PH range. Angewandte Chemie International Edition, 55(42), 13056–13060.

    Article  Google Scholar 

  • Syed, A., Mangano, L., Mao, P., Han, J., & Song, Y. A. (2014). Creating sub-50 nm nanofluidic junctions in a PDMS microchip via self-assembly process of colloidal silica beads for electrokinetic concentration of biomolecules. Lab on a Chip, 14(23), 4455–4460.

    Article  Google Scholar 

  • Teerapanich, P., Pugnière, M., Henriquet, C., Lin, Y. L., Chou, C. F., & Leïchlé, T. (2017). Nanofluidic fluorescence microscopy (NFM) for real-time monitoring of protein binding kinetics and affinity studies. Biosensors & Bioelectronics, 88, 25–33.

    Article  Google Scholar 

  • Wang, C., Shi, Y., Wang, J., Pang, J., & Xia, X. H. (2015). Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching. ACS Applied Materials & Interfaces, 7(12), 6835–6841.

    Article  Google Scholar 

  • Wang, H., Deng, C., Xiao, C., Liu, L., Liu, J., Peng, Y., Yu, B., & Qian, L. (2019a). Fast and maskless nanofabrication for high-quality nanochannels. Sensors and Actuators, B: Chemical, 288, 383–391.

    Article  Google Scholar 

  • Wang, C., Wang, Y., Zhou, Y., Wu, Z. Q., & Xia, X. H. (2019b). High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices. Analytical and Bioanalytical Chemistry, 411(18), 4007–4016.

    Article  Google Scholar 

  • Wu, C., Lin, T. G., Zhan, Z., Li, Y., Tung, S. C. H., Tang, W. C., & Li, W. J. (2017). Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography. Microsystems & Nanoengineering, 3, 16084.

    Article  Google Scholar 

  • Xu, Y. (2018). Nanofluidics: A new arena for materials science. Advanced Materials, 30(3), 1702419.

    Article  Google Scholar 

  • Xu, Y., & Matsumoto, N. (2015). Flexible and in situ fabrication of nanochannels with high aspect ratios and nanopillar arrays in fused silica substrates utilizing focused ion beam. RSC Advances, 5(62), 50638–50643.

    Article  Google Scholar 

  • Xu, Y., & Xu, B. (2015). An integrated glass nanofluidic device enabling in-situ electrokinetic probing of water confined in a single nanochannel under pressure-driven flow conditions. Small, 11(46), 6165–6171.

    Article  Google Scholar 

  • Xu, Y., Wang, C., Dong, Y., Li, L., Jang, K., Mawatari, K., Suga, T., & Kitamori, T. (2012). Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process. Analytical and Bioanalytical Chemistry, 402(3), 1011–1018.

    Article  Google Scholar 

  • Xu, Y., Wang, C., Li, L., Matsumoto, N., Jang, K., Dong, Y., Mawatari, K., Suga, T., & Kitamori, T. (2013). Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment. Lab on a Chip, 13(6), 1048–1052.

    Article  Google Scholar 

  • Xu, Y., Matsumoto, N., Wu, Q., Shimatani, Y., & Kawata, H. (2015a). Site-specific nanopatterning of functional metallic and molecular arbitrary features in nanofluidic channels. Lab on a Chip, 15(9), 1989–1993.

    Article  Google Scholar 

  • Xu, Y., Wu, Q., Shimatani, Y., & Yamaguchi, K. (2015b). Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures. Lab on a Chip, 15(19), 3856–3861.

    Article  Google Scholar 

  • Xu, Y., Shinomiya, M., & Harada, A. (2016). Soft matter-regulated active nanovalves locally self-assembled in femtoliter nanofluidic channels. Advanced Materials, 28(11), 2209–2216.

    Article  Google Scholar 

  • Zand, K., Pham, T., Davila, A., Wallace, D. C., & Burke, P. J. (2013). Nanofluidic platform for single mitochondria analysis using fluorescence microscopy. Analytical Chemistry, 85(12), 6018–6025.

    Article  Google Scholar 

  • Zhang, B., Wood, M., & Lee, H. (2009). A silica nanochannel and its applications in sensing and molecular transport. Analytical Chemistry, 81(13), 5541–5548.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI (Grant Nos. JP19KK0129, JP18H01848, JP20H00497, JP16K13653, JP26706010, JP26630403, JP21H04640, JP20H00497, JP21J14595), MEXT KAKENHI (Grant Nos. JP19H04678, JP17H05468, and JP26107714), JST PRESTO (Grant No. JPMJPR18H5), and the Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, J., Xu, Y. (2022). Nano-in-Nano Integration Technology for Advanced Fabrication of Functional Nanofluidic Devices. In: Yang, Z. (eds) Advanced MEMS/NEMS Fabrication and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-79749-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79749-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79748-5

  • Online ISBN: 978-3-030-79749-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics