Skip to main content
Log in

Magnetofluidic spreading in microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We investigate the spreading phenomena caused by the interaction between a uniform magnetic field and a magnetic fluid in microchannels. The flow system consists of two liquids: a ferrofluid and a mineral oil. The ferrofluid consists of superparamagnetic nanoparticles suspended in an oil-based carrier. Under a uniform magnetic field, the superparamagnetic particles are polarized and represent magnetic dipoles. The magnetization of the magnetic nanoparticles leads to a force resulting in the change of diffusion behavior inside the microchannel. Mixing due to secondary flow close to the interface also contributes to the spreading of the ferrofluid. The magnetic force acting on the liquid/liquid interface is caused by the mismatch of magnetization between the nanoparticles and surrounding liquid in a multiphase flow system. This paper examines the roles of magnetic force in the observed spreading phenomena. The effect of particles on the flow field is also considered. These phenomena would allow simple wireless control of a microfluidic system without changing the flow rates. These phenomena can potentially be used for focusing and sorting in cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863

    Article  Google Scholar 

  2. Rosensweig RE, Kaiser R, Miskolczy G (1969) Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci 29(4):680

    Article  Google Scholar 

  3. Pankhurst Q, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  Google Scholar 

  4. Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26(4):328

    Article  Google Scholar 

  5. Dressman D, Yan H, Traverso G, Kinzler K, Vogelstein B (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci 100(15):8817

    Article  Google Scholar 

  6. Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94(3):217

    Article  Google Scholar 

  7. Rida A, Gijs M (2004) Anal Chem 76(21):6239

    Article  Google Scholar 

  8. Astalan A, Ahrentorp F, Johansson C, Larsson K, Krozer A (2004) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Biosensors Bioelectron 19(8):945

    Article  Google Scholar 

  9. Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94(6):606

    MathSciNet  Google Scholar 

  10. Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley J, Kornev K (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5(5):879

    Article  Google Scholar 

  11. Nguyen NT (2011) Micro magnetofluidics—interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1

    Google Scholar 

  12. Zhu T, Lichlyter D, Haidekker M, Mao L (2011) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluid 10(6):1233

    Article  Google Scholar 

  13. Zhu T, Cheng R, Mao L (2011) Focusing microparticles in a microfluidic channel with ferrofluids in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS). In: 16th international IEEE, 2011, pp 1280–1283

  14. Zhu T, Marrero F, Mao L (2010) Continuous separation of non-magnetic particles inside ferrofluids. Microfluid Nanofluid 9(4):1003

    Article  Google Scholar 

  15. Zhu T, Cheng R, Lee S, Rajaraman E, Eiteman M, Querec T, Unger E, Mao L (2012) Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluid Nanofluid 12:1–10

    Article  Google Scholar 

  16. Kose A, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci 106(51):21478

    Article  Google Scholar 

  17. Liang L, Xuan X (2012) Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid Nanofluid, 1–7

  18. Blums E (1980) Some aspects of heat and mass transfer in magnetic fluids. IEEE Trans Magn 16(2):347

    Article  Google Scholar 

  19. Wang Y, Zhe J, Chung B, Dutta P (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4(5):375

    Article  Google Scholar 

  20. Le T, Suh Y, Kang S (2009) Efficient mixing in microchannel by using magnetic nanoparticles. Int J Math Models Methods Appl Sci, 58–67

  21. Reza Habibi M, Ghasemi M (2011) Numerical study of magnetic nanoparticles concentration in biofluid (blood) under influence of high gradient magnetic field. J Magn Magn Mater 323(1):32

    Article  Google Scholar 

  22. Furlani E, Xue X (2012) Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid Nanofluid, 1–14

  23. Wei Z, Lee C, Lai M (2010) Magnetic particle separation using controllable magnetic force switches. J Magn Magn Mater 322(1):19

    Article  Google Scholar 

  24. Zolgharni M, Azimi S, Bahmanyar M, Balachandran W (2007) A numerical design study of chaotic mixing of magnetic particles in a microfluidic bio-separator. Microfluid Nanofluid 3(6):677

    Article  Google Scholar 

  25. Thurm S, Odenbach S (2002) Magnetoviscous separation of ferrofluids. J Magn Magn Mater 252(1-3 SPEC ISS):247

    Google Scholar 

  26. Wu Z, Nguyen NT (2005) Convective-diffusive transport in parallel lamination micromixers. Microfluid Nanofluid 1(3):208

    Article  Google Scholar 

  27. Odenbach S, Thurm S (2003) Magnetoviscous effects in ferrofluids. Ferrofluids, 185–201

  28. Blums E (1995) Some new problems of complex thermomagnetic and diffusion-driven convection in magnetic colloids. J Magn Magn Mater 149(1):111

    Article  Google Scholar 

  29. Blums E (1999) Mass transfer in nonisothermal ferrocolloids under the effect of a magnetic field. J Magn Magn Mater 201(1):242

    Article  Google Scholar 

  30. Wen C, Liang K, Chen H, Fu L (2011) Numerical analysis of a rapid magnetic microfluidic mixer. Electrophoresis 32(22):3268

    Article  Google Scholar 

  31. Patankar S (1981) A calculation procedure for two-dimensional elliptic situations. Numer Heat Transf 4(4):409

    Google Scholar 

  32. Wu Z, Nguyen NT (2005) Rapid mixing using two-phase hydraulic focusing in microchannels. Biomedical Microdevices 7(1):13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, GP., Nguyen, NT. Magnetofluidic spreading in microchannels. Microfluid Nanofluid 13, 655–663 (2012). https://doi.org/10.1007/s10404-012-1056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1056-x

Keywords

Navigation