Skip to main content
Log in

A SPH-based particle model for computational microrheology

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this article we present a particle method based on smoothed particle hydrodynamics for microrheology simulations of polymeric fluids. The viscoelasticity of the solvent is modelled via a standard Oldroyd-B model and thermal fluctuations, inherently present at the microscopic scale, are incorporated into the particle framework by application of the GENERIC formalism, ensuring the strict fulfilment of the Fluctuation–Dissipation theorem at the discrete level. Rigid structures of arbitrary shape suspended in the viscoelastic solvent are modelled by freezing SPH particles within a given solid domain and letting them interact with the solvent particles. The rheological properties of the Oldroyd-B fluid, namely frequency-dependent storage and loss moduli, are extracted via macroscopic deterministic simulations under small amplitude oscillatory (SAOS) flow and, alternatively, through standard microrheological simulations of a probe particle suspended in the same Brownian viscoelastic medium, by assuming the validity of a generalized Stokes–Einstein relation (GSER). We check that good agreement with the analytical theory for the Oldroyd-B model is found in the deterministic SAOS flow over the entire regime of frequencies investigated. Concerning the microrheological measurements, good agreement is observed only up to a maximal frequencies corresponding to time scales considerably larger than the viscous time of the probe particle where the diffusive regime is fully established. At larger investigated frequencies, a crossover between diffusive and ballistic behaviour for the MSD of the probe is observed and validity of the GSER is questionable. The model presented here provides an optimal computational framework to complement experimental observations and to analyse quantitatively the basic assumptions involved in the theory of microrheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bedeaux D, Mazur P (1974) Brownian motion and fluctuating hydrodynamics. Physica 76:247–258

    Article  MathSciNet  Google Scholar 

  • Bian X, Litvinov S, Qian R, Ellero M, Adams NA (2012) Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys Fluids 24:012002

    Article  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1976) Dynamics of polymeric liquids, vol 1. John Wiley, NY

  • ten Bosch BIM (1999) On an extension of dissipative particle dynamics for viscoelastic flow modelling. J Non-Newton Fluid Mech 83:231–248

    Article  MATH  Google Scholar 

  • Cardinaux F, Cipelletti L, Scheffold F, Schurtenberger P (2002) Microrheology of giant-micelle solutions. EPL (Europhys Lett) 57:738

    Article  Google Scholar 

  • Carpen IC, Brady JF (2005) Microrheology of colloidal dispersions by brownian dynamics simulations. J Rheol 49:1483–1502

    Article  Google Scholar 

  • Choi YJ, Hulsen MA, Meijer HE (2010) An extended finite element method for the simulation of particulate viscoelastic flows. J Non-Newton Fluid Mech 165:607–624

    Article  Google Scholar 

  • Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method part I. Experimental. Exp Cell Res 1:37–80

    Article  Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  Google Scholar 

  • D’Avino G, Maffettone P, Hulsen M, Peters G (2007) A numerical method for simulating concentrated rigid particle suspensions in an elongational flow using a fixed grid. J Comput Phys 226:688–711

    Article  MATH  Google Scholar 

  • D’Avino G, Cicale G, Hulsen M, Greco F, Maffettone P (2009) Effects of confinement on the motion of a single sphere in a sheared viscoelastic liquid. J Non-Newton Fluid Mech 157:101–107

    Article  Google Scholar 

  • Donev A, Vanden-Eijnden E, Garcia A, Bell J (2010) On the accuracy of finite-volume schemes for fluctuating hydrodynamics. Commun Appl Math Comput Sci 5:149–197

    Article  MathSciNet  MATH  Google Scholar 

  • Ellero M, Español P, Flekkøy EG (2003) Thermodynamically consistent fluid particle model for viscoelastic flows. Phys Rev E 68:041504

    Article  Google Scholar 

  • Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:026705

    Article  Google Scholar 

  • Español P, Anero JG, Zúñiga I (2009) Microscopic derivation of discrete hydrodynamics. J Chem Phys 131:244117

    Google Scholar 

  • Evans RML, Tassieri M, Auhl D, Waigh TA (2009) Direct conversion of rheological compliance measurements into storage and loss moduli. Phys Rev E 80:012501

    Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102

    Article  Google Scholar 

  • Fattal R, Kupferman R (2004) Constitutive laws for the matrix-logarithm of the conformation tensor. J Non-Newton Fluid Mech 123:281–285

    Article  MATH  Google Scholar 

  • Freundlich H, Seifriz W (1923) Über die elästizitaet von solen und gelen. Z Phys Chem 104:233–261

    Google Scholar 

  • Goodman A, Tseng Y, Wirtz D (2002) Effect of length, topology, and concentration on the microviscosity and microheterogeneity of DNA solutions. J Mol Biol 323: 199 – 215

    Article  Google Scholar 

  • Grimm M, Jeney S, Franosch T (2011) Brownian motion in a maxwell fluid. Soft Matter 7:2076–2084

    Article  Google Scholar 

  • Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56:6620–6632

    Article  MathSciNet  Google Scholar 

  • Happel J, Brenner H (1965) Low Reynolds number hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Huang R, Chavez I, Taute K, Lukic B, Jeney S, Raizen M, Florin E (2011) Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid. Nat Phys 7:576–580

    Article  Google Scholar 

  • Hulsen MA, Fattal R, Kupferman R (2005) Flow of viscoelastic fluids past a cylinder at high weissenberg number: stabilized simulations using matrix logarithms. J Non-Newton Fluid Mech 127:27–39

    Article  MATH  Google Scholar 

  • Khair AS, Brady JF (2005) “Microviscoelasticity” of colloidal dispersions. J Rheol 49:1449

    Article  Google Scholar 

  • Khair AS, Brady JF (2006) Single particle motion in colloidal dispersions: a simple model for active and nonlinear microrheology. J Fluid Mech 557:73–117

    Article  MathSciNet  MATH  Google Scholar 

  • Khair AS, Brady JF (2008) Microrheology of colloidal dispersions: shape matters. J Rheol 52:165–196

    Article  Google Scholar 

  • Liu J, Gardel ML, Kroy K, Frey E, Hoffman BD, Crocker JC, Bausch AR, Weitz DA (2006) Microrheology probes length scale dependent rheology. Phys Rev Lett 96:118104

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications (advances in interfacial engineering). Wiley-VCH

  • Mason TG, Weitz DA (1995) Optical measurements of frequency dependent linear viscoelastic moduli of complex fluids. Phys Rev E 74(7):1250–1253

    Google Scholar 

  • Mason TG, Ganesan K, van Zanten JH, Wirtz D, Kuo SC (1997) Particle tracking microrheology of complex fluids. Phys Rev Lett 79:3282–3285

    Article  Google Scholar 

  • Mason TG, Gisler T, Weitz DA, Kroy K, Frey E (2000) Rheology of f-actin solutions determinated from thermally driven tracer motion. J Rheol 44:917–928

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  MathSciNet  Google Scholar 

  • Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136:214–226

    Article  MATH  Google Scholar 

  • Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56:6633–6655

    Article  MathSciNet  Google Scholar 

  • Öttinger HC, van den Brule BHAA, Hulsen MA (1997) Brownian configuration fields and variance reduced connffessit. J Non-Newtonian Fluid Mech 70:255–261

    Article  Google Scholar 

  • Padding JT, Louis AA (2006) Hydrodynamic interactions and brownian forces in colloidal suspensions: coarse-graining over time and length scales. Phys Rev E 74(3):031402

    Article  Google Scholar 

  • Pusey PN (2011) Brownian motion goes ballistic. Science 332:802–803

    Article  Google Scholar 

  • Selvaggi L, Salemme M, Vaccaro C, Pesce G, Rusciano G, Sasso A, Campanella C, Carotenuto R (2010) Multiple-particle-tracking to investigate viscoelastic properties in living cells. Methods 51:20–26

    Article  Google Scholar 

  • Sohn IS (2004) Microrheology of model quasi-hard-sphere dispersions. J Rheol 48:117

    Article  Google Scholar 

  • Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438

    Article  Google Scholar 

  • Ter-Oganessian N, Quinn B, Pink DA, Boulbitch A (2005) Active microrheology of networks composed of semiflexible polymers: computer simulation of magnetic tweezers. Phys Rev E 72:041510

    Article  Google Scholar 

  • Vázquez-Quesada A, Ellero M, Español P (2009a) Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. J Chem Phys 130:034901

    Article  Google Scholar 

  • Vázquez-Quesada A, Ellero M, Español P (2009b) Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Phys Rev E 79:056707

    Article  MathSciNet  Google Scholar 

  • Voulgarakis NK, Chu JW (2009) Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids. J Chem Phys 130(13):134111

    Article  Google Scholar 

  • Waigh T (2005) Microrheology of complex fluids. Rep Prog Phys 68:685–742

    Article  Google Scholar 

  • Xu K, Forest MG, Klapper I (2007) On the correspondence between creeping flows of viscous and viscoelastic fluids. J Non-Newton Fluid Mech 145:150–172

    Article  MATH  Google Scholar 

  • Yeh IC, Hummer G (2004) System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B 108:15873–15879

    Article  Google Scholar 

  • Zwanzig R, Bixon M (1970) Hydrodynamic theory of the velocity correlation function. Phys Rev A 2(5):2005–2012. doi:10.1103/PhysRevA.2.2005

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by the Deutsche Forschungsgemeinschaft (DFG) via the grant EL503/1-1, and by MICINN under the project FIS2007-65869-C03-03 are gratefully acknowledged. A. Vázquez-Quesada wants also to acknowledge the financial support provided by Programa Propio de Investigación de la Universidad Nacional de Educación a Distancia (UNED) 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Vázquez-Quesada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez-Quesada, A., Ellero, M. & Español, P. A SPH-based particle model for computational microrheology. Microfluid Nanofluid 13, 249–260 (2012). https://doi.org/10.1007/s10404-012-0954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-0954-2

Keywords

Navigation