Skip to main content
Log in

Development and characterisation of integrated microfluidics on waveguide-based photonic platforms fabricated from hybrid materials

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This article reports on a detailed investigation of sol–gel processed hybrid organic–inorganic materials for use in lab-on-a-chip (LoC) applications. A particular focus on this research was the implementation of integrated microfluidic circuitry in waveguide-based photonic sensing platforms. This objective is not possible using other fabrication technologies that are typically used for microfluidic platforms. Significant results on the surface characterisation of hybrid sol–gel processed materials have been obtained which highlight the ability to tune the hydrophilicity of the materials by careful adjustment of material constituents and processing conditions. A proof-of-principle microfluidic platform was designed and a fabrication process was established which addressed requirements for refractive index tuning (essential for waveguiding), bonding of a transparent cover layer to the device, optimized sol–gel deposition process, and a photolithography process to form the microchannels. Characterisation of fluid flow in the resulting microchannels revealed volumetric flow rates between 0.012 and 0.018 μl/min which is characteristic of capillary-driven fluid flow. As proof of the integration of optical and microfluidic functionality, a microchannel was fabricated crossing an optical waveguide which demonstrated that the presence of optical waveguides does not significantly disrupt capillary-driven fluid flow. These results represent the first comprehensive evaluation of photocurable hybrid sol–gel materials for use in waveguide-based photonic platforms for lab-on-a-chip applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Avellaneda CO, Dahmouche K, Bulhoes LOS (2002) All sol-gel electrochromic smart windows: CeO2-TiO2/Ormolyte. Mol Cryst Liquid Cryst 374:113–118

    Article  Google Scholar 

  • Avendano E, Berggren L, Niklasson GA, Granqvist CG, Azens A (2006) Electrochromic materials and devices: brief survey and new data on optical absorption in tungsten oxide and nickel oxide films. Thin Solid Films 496(1):30–36

    Article  Google Scholar 

  • Bao JB, Harrison DJ (2006) Measurement of flow in microfluidic networks with micrometer-sized flow restrictors. AICHE J 52(1):75–85

    Article  Google Scholar 

  • Basabe-Desmonts L, Benito-Lopez F, Gardeniers HJGE, Duwel R, van den Berg A, Reinhoudt DN, Crego-Calama M (2008) Fluorescent sensor array in a microfluidic chip. Anal Bioanal Chem 390(1):307–315

    Article  Google Scholar 

  • Becker H, Heim U (2000) Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors Actuators A Phys 83(1–3):130–135

    Article  Google Scholar 

  • Besanger TR, Brennan JD (2006) Entrapment of membrane proteins in sol-gel derived silica. J Sol-Gel Sci Technol 40(2–3):209–225

    Article  Google Scholar 

  • Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005a) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Sys 14(3):590–597

    Article  Google Scholar 

  • Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005b) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597

    Article  Google Scholar 

  • Birnie DP (2004) Surface skin development and rupture during sol-gel spin-coating. J Sol-Gel Sci Technol 31(1–3):225–228

    Article  Google Scholar 

  • Buso D, Della Giustina G, Brusatin G, Guglielmi M, Martucci A, Chiasera A, Ferrari M, Romanato F (2009) Patterning of sol-gel hybrid organic-inorganic film doped with luminescent semiconductor quantum dots. J Nanosci Nanotechnol 9(3):1858–1864

    Article  Google Scholar 

  • Copperwhite R, Oubaha M, Versace DL, Croutxé-Barghorn C, MacCraith BD (2008) The role of photoinitiator and chelating agent in the fabrication of optical waveguides from UV-photocurable organo-mineral sol–gel materials. J Non-Cryst Solids 354(30):3617–3622

    Article  Google Scholar 

  • Coudray P, Etienne P, Porque J, Moreau Y, Najafi SI (1998) Integrated optical devices achieved by sol-gel process, integrated optics devices II. The International Society for Optical Engineering, San Jose, p 252

    Google Scholar 

  • De Malsche W, Clicq D, Verdoold V, Gzil P, Desmet G, Gardeniers H (2007) Integration of porous layers in ordered pillar arrays for liquid chromatography. Lab Chip 7(12):1705–1711

    Article  Google Scholar 

  • Edwards TL, Mohanty SK, Edwards RK, Thomas CL, Frazier AB (2002) Rapid micromold tooling for injection molding microfluidic components. Sensors Mater 14(3):167–178

    Google Scholar 

  • Efimenko K, Wallace WE, Genzer J (2002) Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interf Sci 254(2):306–315

    Article  Google Scholar 

  • Everaert EP, Vandermei HC, Devries J, Busscher HJ (1995) Hydrophobic recovery of repeatedly plasma-treated silicone-rubber.1. Storage in air. J Adhes Sci Technol 9(9):1263–1278

    Article  Google Scholar 

  • Everaert EP, VanderMei HC, Busscher HJ (1996) Hydrophobic recovery of repeatedly plasma-treated silicone rubber.2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen. J Adhes Sci Technol 10(4):351–359

    Article  Google Scholar 

  • Faustini M, Vayer M, Marmiroli B, Hillmyer M, Amenitsch H, Sinturel C, Grosso D (2010) Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications. Chem Mater 22(20):5687–5694

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi O (2008) Influence of silanols condensation on surface properties of micelle-templated silicas: a modelling study. Microporous Mesoporous Mater 116(1–3):718–722

    Article  Google Scholar 

  • Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61–2:907–914

    Article  Google Scholar 

  • Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens bioelectron 22(11):2387–2399

    Article  Google Scholar 

  • Hamdy AS (2006) Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Mater Lett 60(21–22):2633–2637

    Article  Google Scholar 

  • Hannes B, Vieillard J, Chakra EB, Mazurczyk R, Mansfield CD, Potempa J, Krawczyk S, Cabrera M (2008) The etching of glass patterned by microcontact printing with application to microfluidics and electrophoresis. Sensor Actuators B Chem 129(1):255–262

    Article  Google Scholar 

  • Higgins C, Wencel D, Burke CS, MacCraith BD, McDonagh C (2008) Novel hybrid optical sensor materials for in-breath O-2 analysis. Analyst 133(2):241–247

    Article  Google Scholar 

  • Ho JA, Zeng S, Tseng W, Lin Y, Chen C (2008) Liposome-based immunostrip for the rapid detection of Salmonella. Anal Bioanal Chem 391(2):479–485

    Article  Google Scholar 

  • Hwang T, Lee H, Kim H, Kim G (2010) Two layered silica protective film made by a spray-and-dip coating method on 304 stainless steel. J Sol-Gel Sci Technol 55(2):207–212

    Article  Google Scholar 

  • Iliescu C (2006) Microfluidics in glass: technologies and applications. Informacije Midem-J Microelect Elect Comp Mater 36(4):204–211

    Google Scholar 

  • Jaynes WF, Boyd SA (1991) Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays Clay Mineral 39(4):428–436

    Article  Google Scholar 

  • Jiang HW, Kakkar AK (1999) An alternative route based on acid-base hydrolytic chemistry to NLO active organic-inorganic hybrid materials for second-order nonlinear optics. J Am Chem Soc 121(15):3657–3665

    Article  Google Scholar 

  • Karuppasamy A, Subrahmanyam A (2007) Studies on electrochromic smart windows based on titanium doped WO3 thin films. Thin Solid Films 516(2–4):175–178

    Article  Google Scholar 

  • Kribich KR, Barry H, Copperwhite R, Kolodziejczyk B, O’Dwyer K, Sabattie JM, MacCraith BD (2004) Thermo-optic switches using sol-gel processed hybrid materials. Proc SPIE 5451:518

    Article  Google Scholar 

  • Kribich K, Copperwhite R, Barry H, Kolodziejczyk B, Sabattie JM, O’Dwyer K, MaCCraith B (2005) Novel chemical sensor/biosensor platform based on optical multimode interference (MMI) couplers. Sens Actuators B Chem 107(1):188–192

    Article  Google Scholar 

  • Lei BF, Li B, Zhang HR, Lu SZ, Zheng ZH, Li WL, Wang Y (2006) Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor. Adv Func Mater 16(14):1883–1891

    Article  Google Scholar 

  • Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Sys 9(2):190–197

    Article  Google Scholar 

  • Lynn NS, Dandy DS (2009) Passive microfluidic pumping using coupled capillary/evaporation effects. Lab Chip 9(23):3422–3429

    Article  Google Scholar 

  • Mescher MJ, Swan EEL, Fiering J, Holmboe ME, Sewell WF, Kujawa SG, McKenna MJ, Borenstein JT (2009) Fabrication methods and performance of low-permeability microfluidic components for a miniaturized wearable drug delivery system. J Microelectromech Syst 18(3):501–510

    Article  Google Scholar 

  • Najafi SI, Touam T, Sara R, Andrews MP, Fardad MA (1998) Sol-gel glass waveguide and grating on silicon. J Lightwave Technol 16(9):1640–1646

    Article  Google Scholar 

  • Oubaha M, Smaihi M, Etienne P, Coudray P, Moreau Y (2003) Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process. J Non-Cryst Solids 318(3):305–313

    Article  Google Scholar 

  • Oubaha M, Kribich R, Copperwhite R, Etienne P, OÕDwyer K, MacCraith B, Moreau Y (2005) New organic inorganic sol–gel material with high transparency at 1.55 lm. Opt Commun 253:346–351

    Article  Google Scholar 

  • Oubaha M, Copperwhite R, Murphy B, Kolodziejczyk B, Barry H, O’Dwyer K, MacCraith BD (2006) Development of photo-patternable organo-mineral hybrid films from the sol-gel condensation of alkoxysilanes. Thin Solid Films 510(1–2):334–338

    Article  Google Scholar 

  • Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA, Doraiswamy A, Narayan RJ (2007) Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceramic Technol 4(1):22–29

    Article  Google Scholar 

  • Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari L, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. Acs Nano 2(11):2257–2262

    Article  Google Scholar 

  • Porque J, Coudray P, Charters R, Kribich K, Etienne P, Moreau Y (2000) WDM based on multimode interference-coupler built in an organic-inorganic material. Opt Commun 183(1–4):45–49

    Article  Google Scholar 

  • Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Frohlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt Lett 28(5):301–303

    Article  Google Scholar 

  • Varma PCR, Colreavy J, Cassidy J, Oubaha M, McDonagh C, Duffy B (2010) Corrosion protection of AA 2024–T3 aluminium alloys using 3,4-diaminobenzoic acid chelated zirconium-silane hybrid sol-gels. Thin Solid Films 518(20):5753–5761

    Article  Google Scholar 

  • Versace DL, Oubaha M, Copperwhite R, Croutxé-Barghorn C, MacCraith BD (2008) Waveguide fabrication in UV-photocurable sol–gel materials: influence of the photoinitiating system. Thin Solid Films 516(18):6448–6457

    Article  Google Scholar 

  • Zhang HX, Lu D, Fallahi M (2004) Active organic-inorganic sol gel with high thermal stability for nonlinear optical applications. Appl Phys Lett 84(7):1064–1066

    Article  Google Scholar 

  • Zhu Y, Petkovic-Duran K (2010) Capillary flow in microchannels. Microfluid Nanofluid 8(2):275–282

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CIBA Specialty Chemicals Corporation for having generously provided the Irgacures photoinitiators employed in this study, and gratefully acknowledge the financial support of Enterprise Ireland under the “Commercialisation Fund Technology Development” project Multibiosense (TD/08/309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Copperwhite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copperwhite, R., O’Sullivan, M., Boothman, C. et al. Development and characterisation of integrated microfluidics on waveguide-based photonic platforms fabricated from hybrid materials. Microfluid Nanofluid 11, 283–296 (2011). https://doi.org/10.1007/s10404-011-0795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0795-4

Keywords

Navigation