Skip to main content
Log in

Fluorescent sensor array in a microfluidic chip

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Miniaturization and automation are highly important issues for the development of high-throughput processes. The area of micro total analysis systems (μTAS) is growing rapidly and the design of new schemes which are suitable for miniaturized analytical devices is of great importance. In this paper we report the immobilization of self-assembled monolayers (SAMs) with metal ion sensing properties, on the walls of glass microchannels. The parallel combinatorial synthesis of sensing SAMs in individually addressable microchannels towards the generation of optical sensor arrays and sensing chips has been developed.

The advantages of microfluidic devices, surface chemistry, parallel synthesis, and combinatorial approaches have been merged to integrate a fluorescent chemical sensor array in a microfluidic chip. Specifically, five different fluorescent self-assembled monolayers have been created on the internal walls of glass microchannels confined in a microfluidic chip

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If vacuum is not applied, cross contamination is observed between channels. When the fluid reaches the common outlet it may get inside the adjacent channels due to capillary forces. When the vacuum is applied, the flow rate in the channel is no longer 0.04 μL min−1; the real value has not been calculated.

  2. The small fluorescent signal obtained in channel C3 is probably due to small cross contamination during the washing steps from the common outlet.

  3. Simultaneously acetonitrile was flushed through channels C2, C3, and C4 at the same flow rate while vacuum was applied in the channels common outlet to facilitate fluid flow. After the standard rinsing procedure the fluorescence microscopy image was recorded.

  4. The brightness of this image was higher than that used for the previous images to see the weak fluorescence of the channels after flow of the Cu2+ solution and this produced a higher background signal. All the fluorescence emission profiles have been normalized; the background signal has been set to 0.

  5. Two fluorescence images were obtained each time and then combined, one using blue light and the other using green light for excitation of the fluorophores.

  6. Rinsing of the analytes complexed to the fluorescent SAM for recycling of the sensing surfaces was done by flowing an aqueous solution EDTA (ethylenediaminetetraacetic acid, 0.01 M) through the channels for 30 min.

References

  1. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Anal Chem 74:2637–2652

    Article  CAS  Google Scholar 

  2. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Anal Chem 74:2623–2636

    Article  CAS  Google Scholar 

  3. Whitesides GM (2006) Nature 442:368–373

    Article  CAS  Google Scholar 

  4. Janasek D, Franzke J, Manz A (2006) Nature 442:374–380

    Article  CAS  Google Scholar 

  5. Erickson D, Li DQ (2004) Anal Chim Acta 507:11–26

    Article  CAS  Google Scholar 

  6. Vilkner T, Janasek D, Manz A (2004) Anal Chem 76:3373–3385

    Article  CAS  Google Scholar 

  7. Sun Y, Kwok YC (2006) Anal Chim Acta 556: 80–96

    Article  CAS  Google Scholar 

  8. Lazar IM, Trisiripisal P, Sarvaiya HA (2006) Anal Chem 78:5513–5524

    Article  CAS  Google Scholar 

  9. Maercker C (2005) Biosci Rep 25:57–70

    Article  CAS  Google Scholar 

  10. Huber DL, Manginell RP, Samara MA, Kim BI, Bunker BC (2003) Science 301:352–354

    Article  CAS  Google Scholar 

  11. Kurita R, Yokota Y, Sato Y, Mizutani F, Niwa O (2006) Anal Chem 78:5525–5531

    Article  CAS  Google Scholar 

  12. Cullen CJ, Wootton RCR, De Mello AJ (2004) Curr Opin Drug Discovery Dev 7:798–806

    CAS  Google Scholar 

  13. Kikutani Y, Ueno M, Hisamoto H, Tokeshi M, Kitamori T (2005) QSAR Comb Sci 24:742–757

    Article  CAS  Google Scholar 

  14. Urban PL, Goodall DM, Bruce NC (2006) Biotechnol Adv 24:42–57

    Article  CAS  Google Scholar 

  15. Watts P, Haswell SJ (2005) Chem Soc Rev 34:235–246

    Article  CAS  Google Scholar 

  16. Qin JH, Ye NN, Liu X, Lin BC (2005) Electrophoresis 26:3780–3788

    Article  CAS  Google Scholar 

  17. Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Lab Chip 5:49–55

    Article  CAS  Google Scholar 

  18. Xu B, Du W, Liu BF, Luo QM (2006) Curr Anal Chem 2:67–76

    Article  CAS  Google Scholar 

  19. El-Ali J, Sorger PK, Jensen KF (2006) Nature 442:403–411

    Article  CAS  Google Scholar 

  20. Andersson H, van den Berg A (2003) Sens Actuators B 92:315–325

    Article  CAS  Google Scholar 

  21. Ye Y, Chen L, Liu XZ, Krull UJ (2006) Anal Chim Acta 568:138–145

    Article  CAS  Google Scholar 

  22. Liu CN, Toriello NM, Mathies RA (2006) Anal Chem 78:5474–5479

    Article  CAS  Google Scholar 

  23. Mela P, Onclin S, Goedbloed MH, Levi S, García-Parajó MF, van Hulst NF, Ravoo BJ, Reinhoudt DN, van den Berg A (2005) Lab Chip 5:163–170

    Article  CAS  Google Scholar 

  24. Mogensen KB, Klank H, Kutter JP (2004) Electrophoresis 25:3498–3512

    Article  CAS  Google Scholar 

  25. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Nature 442:412–418

    Article  CAS  Google Scholar 

  26. Kim H, Cohen RE, Hammond PT, Irvine DJ (2006) Adv Funct Mater 16:1313–1323

    Article  CAS  Google Scholar 

  27. Craighead H (2006) Nature 442:387–393

    Article  CAS  Google Scholar 

  28. Dong L, Agarwal AK, Beebe DJ, Jiang HR (2006) Nature 442:551–554

    Article  CAS  Google Scholar 

  29. Auroux PA, Koc Y, deMello A, Manz A, Day PJR (2004) Lab Chip 4:534–546

    Article  CAS  Google Scholar 

  30. Epstein JR, Walt DR (2003) Chem Soc Rev 32:203–214

    Article  CAS  Google Scholar 

  31. James D, Scott SM, Ali Z, O’Hare WT (2005) Microchim Acta 149:1–17

    Article  CAS  Google Scholar 

  32. Lavigne JJ, Savoy S, Clevenger MB, Ritchie JE, McDoniel B, Yoo SJ, Anslyn EV, McDevitt JT, Shear JB, Neikirk D (1998) J Am Chem Soc 120:6429–6430

    Article  CAS  Google Scholar 

  33. Goodey A, Lavigne JJ, Savoy SM, Rodríguez MD, Curey T, Tsao A, Simmons G, Wright J, Yoo SJ, Sohn Y, Anslyn EV, Shear JB, Neikirk DP, McDevitt JT (2001) J Am Chem Soc 123:2559–2570

    Article  CAS  Google Scholar 

  34. Lu Y, Liu JW, Li J, Bruesehoff PJ, Pavot CMB, Brown AK (2003) Biosens Bioelectron 18:529–540

    Article  CAS  Google Scholar 

  35. Mayr T, Igel C, Liebsch G, Klimant I, Wolfbeis OS (2003) Anal Chem 75:4389–4396

    Article  CAS  Google Scholar 

  36. Rakow NA, Suslick KS (2000) Nature 406:710–713

    Article  CAS  Google Scholar 

  37. Rose A, Zhu ZG, Madigan CF, Swager TM, Bulovic V (2005) Nature 434:876–879

    Article  CAS  Google Scholar 

  38. Wygladacz K, Bakker E (2005) Anal Chim Acta 532:61–69

    Article  CAS  Google Scholar 

  39. Wolfbeis OS (2005) J Mater Chem 15:2657–2669

    Article  CAS  Google Scholar 

  40. Jain KK (2004) Curr Opin Drug Discovery Dev 7:285–289

    CAS  Google Scholar 

  41. Basabe-Desmonts L, Zimmerman RS, Reinhoudt DR, Crego-Calama M, Orellana G, Moreno-Bondi MC (2005) In: Wolfbeis OS (ed) Combinatorial method for surface confined sensor design and fabrication. Springer-Verlag, Berlin

    Google Scholar 

  42. Mancin F, Rampazzo E, Tecilla P, Tonellato U (2006) Chem Eur J 12:1844–1854

    Article  CAS  Google Scholar 

  43. Zimmerman R, Basabe-Desmonts L, van Der Baan F, Reinhoudt DN, Crego-Calama M (2005) J Mater Chem 15:2772–2777

    Article  CAS  Google Scholar 

  44. Munro NJ, Huhmer AFR, Landers JP (2001) Anal Chem 73:1784–1794

    Article  CAS  Google Scholar 

  45. Crooks RM, Ricco AJ (1998) Acc Chem Res 31:219–227

    Article  CAS  Google Scholar 

  46. Kaifer AE (1996) Isr J Chem 36:389–397

    CAS  Google Scholar 

  47. Brivio M, Oosterbroek RE, Verboom W, Goedbloed MH, van den Berg A, Reinhoudt DN (2003) Chem Commun :1924–1925

  48. Muruganathan R, Zhang Y, Fischer TM (2006) J Am Chem Soc 128:3474–3475

    Article  CAS  Google Scholar 

  49. Zhao B, Moore JS, Beebe DJ (2002) Anal Chem 74:4259–4268

    Article  CAS  Google Scholar 

  50. Zhao B, Moore JS, Beebe DJ (2001) Science 291:1023–1026

    Article  CAS  Google Scholar 

  51. Furukawa K, Nakashima H, Kashimura Y, Torimitsu K (2006) Lab Chip 6:1001–1006

    Article  CAS  Google Scholar 

  52. Smith EA, Thomas WD, Kiessling LL, Corn RM (2003) J Am Chem Soc 125:6140–6148

    Article  CAS  Google Scholar 

  53. Kaji H, Hashimoto M, Nishizawa M (2006) Anal Chem 78:5469–5473

    Article  CAS  Google Scholar 

  54. Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S (2004) Science 304:1305–1308

    Article  CAS  Google Scholar 

  55. Fernandez YD, Gramatges AP, Amendola V, Foti F, Mangano C, Pallavicini P, Patroni S (2004) Chem Commun 1650–1651

  56. Montalti M, Prodi L, Zaccheroni N (2005) J Mater Chem 15:2810–2814

    Article  CAS  Google Scholar 

  57. Nguyen T, Rosenzweig Z (2002) Anal Bioanal Chem 374:69–74

    Article  CAS  Google Scholar 

  58. Rampazzo E, Brasola E, Marcuz S, Mancin F, Tecilla P, Tonellato U (2005) J Mater Chem 15:2687–2696

    Article  CAS  Google Scholar 

  59. Zheng Y, Orbulescu J, Ji X, Andreopoulos FM, Pham SM, Leblanc RM (2003) J Am Chem Soc 125:2680–2686

    Article  CAS  Google Scholar 

  60. Crego-Calama M, Reinhoudt DN (2001) Adv Mater 13:1171–1174

    Article  CAS  Google Scholar 

  61. Rudzinski CM, Young AM, Nocera DG (2002) J Am Chem Soc 124:1723–1727

    Article  CAS  Google Scholar 

  62. Buranda T, Huang JM, Perez-Luna VH, Schreyer B, Sklar LA, Lopez GP (2002) Anal Chem 74:1149–1156

    Article  CAS  Google Scholar 

  63. Tiggelaar RM, Benito-Lopez F, Hermes DC, Rathgen H, Egberink RJM, Mugele FG, Reinhoudt DN, van den Berg A, Verboom W, Gardeniers H (2007) Chem Eng J 131:163–170

    Article  CAS  Google Scholar 

  64. Basabe-Desmonts L, Beld J, Zimmerman RS, Hernando J, Mela P, García-Parajó MFG, van Hulst NF, van den Berg A, Reinhoudt DN, Crego-Calama M (2004) J Am Chem Soc 126:7293–7299

    Article  CAS  Google Scholar 

  65. Choi CH, Westin KJA, Breuer KS (2003) Phys Fluids 15:2897–2902

    Article  CAS  Google Scholar 

  66. Valeur B, Leray I (2000) Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  67. Basabe-Desmonts L, van Der Baan F, Zimmerman R, Reinhoudt DN, Crego-Calama M (2007) Sensors 7:1731–1746

    Article  CAS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Crego-Calama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials

Figures S1, S2, and S3 show pictures of the chip and the chip holder, the setup for parallel synthesis of the monolayer array in the multichannel chip, and the setup for imaging of the chip (PDF 1.06 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basabe-Desmonts, L., Benito-López, F., Gardeniers, H.J.G.E. et al. Fluorescent sensor array in a microfluidic chip. Anal Bioanal Chem 390, 307–315 (2008). https://doi.org/10.1007/s00216-007-1720-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1720-2

Keywords

Navigation