Skip to main content
Log in

Electrostatic force calculation for an EWOD-actuated droplet

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper examines the electrostatic force on a microdroplet transported via electrowetting on dielectric (EWOD). In contrast with previous publications, this article details the force distribution on the advancing and receding fluid faces, in addition to presenting simple algebraic formulae for the net force in terms of system parameters. Dependence of the force distribution and its integral on system geometry, droplet location, and material properties is described. The consequences of these theoretically and numerically obtained results for design and fabrication of EWOD devices are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bahadur V, Garimella S (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 11(8):1494–1503

    Google Scholar 

  • Baird E, Mohseni K (2005) Surface tension actuation of droplets in microchannels. IMECE 2005-79371, 2005 ASME international mechanical engineering congress and R&D expo, Orlando

  • Beni G, Hackwood S, Jackel J (1982) Continuous electrowetting effect. Appl Phys Lett 40(10):912–914

    Article  Google Scholar 

  • Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(086101):1–4

    Google Scholar 

  • Chen J, Troian S, Darhuber A, Wagner S (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation. J Appl Phys 97(014906):1–9

    Google Scholar 

  • Cho S, Fan S, Moon H, Kim C (2002) Towards digital microfluidic circuits: creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation. In: Technical digest. MEMS, proceedings of 15th IEEE international conference, pp 32–35

  • Cho S, Moon H, Kim C (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J MEMS 12(1):70–80

    Google Scholar 

  • Cooney C, Chen C-Y, Emerling M, Nadim A, Sterling J (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid (Online first)

  • Darhuber A, Valentino J, Troian S, Wagner S (2003) Microfluidic actuation by modulation of surface stresses. Appl Phys Lett 82:657

    Article  Google Scholar 

  • Dolatabadi A, Mohseni K, Arzpeyma A (2006) Behaviour of a moving droplet under electrowetting actuation: numerical simulation. Can J Chem Eng 84(1):17–21

    Google Scholar 

  • Fair R, Srinivasan V, Ren H, Paik P, Pollack M (2003) Electrowetting-based on-chip sample processing for integrated microfluidics. In: IEEE international electron devices meeting (IEDM)

  • Griffiths D (1972) Introduction to electrodynamics. Prentice-Hall, Englewood Cliffs

  • Jackson J (1998) Classical electrodynamics. Wiley, New York

    Google Scholar 

  • Jones T (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18:4437–4443

    Article  Google Scholar 

  • Jones T (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15:1184–1187

    Article  Google Scholar 

  • Kang K (2002) How electrostatic fields change contact angle in electrowetting. Langmuir 18(26):10318–10322

    Article  Google Scholar 

  • Kang K, Kang I, Lee C (2003) Wetting tension due to coulombic interaction in charge-related wetting phenomena. Langmuir 19(13):5407–5412

    Article  MathSciNet  Google Scholar 

  • Landau L, Lifshitz E, Pitaevskii L (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Pergamon, New York

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim C (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators Phys A 95:259–268

    Article  Google Scholar 

  • Mohseni K, Baird E, Zhao H (2005) Digitized heat transfer for thermal management of compact microsystems. IMECE 2005-79372, 2005 ASME international mechanical engineering congress and R&D expo, Orlando

  • Moon H, Cho S, Garrell R, Kim C (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92(7):4080–4087

    Article  Google Scholar 

  • Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774

    Article  Google Scholar 

  • Oleg S, Alexander N (2004) Thermocapillary flows under an inclined temperature gradient. J Fluid Mech 504:99–132

    Article  MATH  MathSciNet  Google Scholar 

  • Papathanasiou A, Boudouvis A (2005) Manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl Phys Lett 86(16)

  • Pollack M (2001) Electrowetting-based microactuation of droplets for digital microfluidics. PhD thesis, Duke University

  • Pollack M, Shenderov A, Fair R (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101

    Article  Google Scholar 

  • Saeki F, Baum J, Moon H, Yoon J, Kim C (2001) Electrowetting on dielectrics: reducing voltage requirements for microfluidics. Abstr pap Am Chem Soc, 222(8-PMSE part 2)

  • Shapiro B, Moon H, Garrell R, Kim C (2003) Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J Appl Phys 93(9):5794–5811

    Article  Google Scholar 

  • Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11(4):583–591

    Article  Google Scholar 

  • Wang K, Jones T (2005) Electrowetting dynamics of microfluidic actuation. Langmuir 21:4211–4217

    Article  Google Scholar 

  • Wheeler A, Moon H, Kim C, Loo J, Garrell R (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76:4833–4838

    Article  Google Scholar 

  • Wheeler A, Moon H, Bird C, Loo R, Kim C, Loo J, Garrell R (2005) Digital microfluidics with in-line sample purification for proteomics analyses with maldi-ms. Anal Chem 77:534–540

    Article  Google Scholar 

  • Woodson H, Melcher J (1968a) Electromechanical dynamics. Part I. Discrete systems. Wiley, New York

    Google Scholar 

  • Woodson H, Melcher J (1968b) Electromechanical dynamics. Part II. Fields, forces, and motion. Wiley, New York

    Google Scholar 

  • Woodson H, Melcher J (1968c) Electromechanical dynamics. Part III. Elastic and fluid media. Wiley, New York

    Google Scholar 

  • Zeng J (2006) Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics. IEEE Trans Comput Aided Des Integr Circuits Syst 5(2):224–233

    Article  Google Scholar 

  • Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4:265–277

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge partial funding under AFOSR Contract No. FA9550-05-1-0334 and NSF Contract No. CTS-05-40004 to K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mohseni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baird, E., Young, P. & Mohseni, K. Electrostatic force calculation for an EWOD-actuated droplet. Microfluid Nanofluid 3, 635–644 (2007). https://doi.org/10.1007/s10404-006-0147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0147-y

Keywords

Navigation