Skip to main content
Log in

Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, the behavior of a micron-scale fluid droplet on a heterogeneous surface is investigated using a two-phase lattice Boltzmann method (LBM). The two-phase LBM permits the simulation of the time dependent three-dimensional motion of a liquid droplet on solid surface patterned with hydrophobic and hydrophilic strips. A nearest-neighbor molecular interaction force is used to model the adhesive forces between the fluid and solid walls. The solid heterogeneous wall is a uniform hydrophilic substrate painted with hydrophobic strips. The model is validated by demonstrating the consistency of the simulation results with an exact solution for capillary rise and through qualitative comparison of computed dynamic contact line behavior with experimentally measured surface properties and observed surface shapes of a droplet on a heterogeneous surface. The dependence of spreading behavior on wettability, the width of hydrophobic strip, initial location of the droplet relative to the strips, and gravity is investigated. A decrease in contact angle of the liquid on a hydrophilic surface may lead to breakup of the droplet for certain substrate patterns. The simulations suggest that the present lattice Boltzmann (LB) model can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adão MH, de Ruijter M, Voué M, De Coninck J (1999) Droplet spreading on heterogeneous substrates using molecular dynamics. J Phys Rev E 59:746–750

    Article  Google Scholar 

  • Bekink S, Karaborni S, Verbist G, Esselink K (1996) Simulating the spreading of a drop in the terraced wetting regime. Phys Rev Lett 76:3766–3769

    Article  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases, I: small amplitude processes in charged and neutral one component system. Phys Rev 94:511–525

    Article  MATH  Google Scholar 

  • Blake TD (1993) In: Berg JC (ed) Marcel Dekker, Wettability, Charpter 5, NY

  • Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid sphere. J Chem Phys 51:635–636

    Article  Google Scholar 

  • Cercignani C (1975) Theory and Application of the Boltzmann Equation. Scottish Academic press, Edinburgh

    MATH  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • De Coninck J, de Ruijter MJ, Voue M (2001) Dynamics of wetting, current opinion in colloid interface. Science 6:49–53

    Google Scholar 

  • De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  • Deng T, Ha S, Cheng JY, Ross CA, Thomas EL (2002) Micropatterning of block copolymer solutions. Langmuir 18:6719–6722

    Article  Google Scholar 

  • D’Ortona U, De Coninck J, Koplik J, Banavar JR (1996) Terraced spreading mechanisms for chain molecules. Phys Rev E 53:562–569

    Article  Google Scholar 

  • Dupuis A, Yeomans JM (2004) Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces. Future Generation Computer system 20:993–1001

    Article  Google Scholar 

  • Dupuis A, Yeomans JM (2005a) Droplet dynamics on patterned substrates. Pramana J Phys 64(6):1019–1027

    Article  Google Scholar 

  • Dupuis A, Leopoldes J, Bucknall DG, Yeomans JM (2005b) Control of drop positioning using chemical patterning. Appl Phys Lett 87:024103–024103

    Article  Google Scholar 

  • Frisch U, d’Humieres D, Hasslacher B, Lallemand P, Pomeau Y, Rivet JP (1987) Lattice gas hydrodynamics in two and three dimensions. Complex Syst 1:649–707

    MathSciNet  MATH  Google Scholar 

  • Gau H, Herminghaus S, Lenz P, Lipowsky R (1999) Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283(5398):46–49

    Article  Google Scholar 

  • Grunau D, Chen S, Eggert K (1993) A lattice Boltzmann model for multiphase fluid flows. Phys Fluids A 5:2557–2562

    Article  MATH  Google Scholar 

  • Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327

    Article  Google Scholar 

  • Haataja M, Nieminen JA, Ala-Nissila T (1996) Dynamics of the spreading of chainlike molecules with asymmetric surface interactions. Phys Rev E 53:5111–5122

    Article  Google Scholar 

  • He X, Doolen G (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107(1/2):309–328

    Article  MATH  Google Scholar 

  • He X, Luo LS (1997) Theory of the lattice Boltzmann: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56:6811–6817

    Article  Google Scholar 

  • He X, Shan X, Doolen GD (1998) Discrete Boltzmann equation model for nonideal gases. Phys Rev E 57(1):R13–R16

    Article  Google Scholar 

  • He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J Comp Phys 152:642–663

    Article  MathSciNet  MATH  Google Scholar 

  • Lenz P, Lipowsky R (1998) Morphological transitions of wetting layers on structured surfaces. Phys Rev Lett 80:1920–1923

    Article  Google Scholar 

  • Leopoldes J, Dupuis A, Bucknall DG, Yeomans JM (2003) Jetting micron-scale droplets onto chemically heterogeneous surface. Langmuir 19:9818–9822

    Article  Google Scholar 

  • Martys NS, Chen H (1996) Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E 53:743–750

    Article  Google Scholar 

  • Mei R, Shyy W, Yu D, Luo LS (2000) Lattice Boltzmann method for 3-D flows with curved boundary. J Comp Phys 161:680–699

    Article  MATH  Google Scholar 

  • Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–659

    Article  Google Scholar 

  • Pompe T, Fery A, Herminghaus S (1998) Image liquid structures on inhomogeneous surfaces by scanning force microscopy. Langmuir 14:2585–2588

    Article  Google Scholar 

  • Rothman DH, Zaleski S (1994) Lattice-gas models of phase separation: interface, phase transitions and multiphase flow. Rev Mod Phys 66:1417–1479

    Article  Google Scholar 

  • de Ruijter MJ, Blake TD, De Coninck J (1999) Dynamic wetting studies by molecular modeling simulations of droplet spreading. Langmuir 15:7836–7847

    Article  Google Scholar 

  • Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819

    Article  Google Scholar 

  • Shan X, Chen H (1994) Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948

    Article  Google Scholar 

  • Sterling JD, Chen S (1996) Stability analysis of lattice Boltzmann methods. J Comp Phys 23:196–206

    Article  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon, NY

    MATH  Google Scholar 

  • Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of non-ideal fluids. Phys Rev Lett 75:830–833

    Article  Google Scholar 

  • Swift MR, Orlandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys Rev E 54:5041–5052

    Article  Google Scholar 

  • Trevino C, Mendez F, Ferro-Fontan C (1998) Influence of the aspect ratio of a drop in the spreading process over a horizontal surface. Phys Rev E 58:4473–4477

    Article  Google Scholar 

  • Zosel A (1993) Studies of the wetting kinetics of liquid drops on solid surface. Colloid Polym Sci 271:680–687

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Aeronautics and Space Administration through NASA grant NAG8-1727 and through the National Center for Space Exploration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Q., Alexander, J.I.D. Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method. Microfluid Nanofluid 2, 309–326 (2006). https://doi.org/10.1007/s10404-005-0075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-005-0075-2

Keywords

Navigation