Skip to main content
Log in

Shear wave velocity of the healthy thyroid gland in children with acoustic radiation force impulse elastography

  • Original Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Purpose

Acoustic radiation force impulse imaging is a kind of shear wave elastography that can be used in children for differentiating thyroid pathologies. Possible changes in the healthy thyroid gland in children may create difficulties in the use of shear wave velocities (SWV) in thyroid pathologies. The aim of this study was to define the normal values of SWV for the healthy thyroid gland in children, elucidate the correlation of the SWV values with potential influencing factors, and evaluate intra-operator reproducibility of the SWV.

Methods

Between January 2015 and December 2015, a total of 145 healthy children (81 girls, 64 boys; mean age, 10.5 ± 3.14 years; range 6–17 years) were enrolled in the study. The SWV and volume of the thyroid gland were determined.

Results

The mean shear wave velocity of the thyroid gland was 1.22 ± 0.20 m/s. There was no correlation between age and the mean SWV of the thyroid gland (Spearman Rho = 0.049, p = 0.556). There was also no correlation between the thyroid gland volume or BSA and the mean SWV. The only correlation detected was between BSA and total thyroid gland volume (p < 0.001).

Conclusion

In the present study, the SWV of the healthy thyroid gland in children was determined. There was no correlation between the SWV of the thyroid gland and age, BSA, or thyroid gland volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Youk JH, Son EJ, Park AY, et al. Shear-wave elastography for breast masses: local shear wave speed (m/s) versus Young modulus (kPa). Ultrasonography. 2014;33:34–9.

    Article  PubMed  Google Scholar 

  2. Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7:328.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grazhdani H, Cantisani V, Lodise P, et al. Prospective evaluation of acoustic radiation force impulse technology in the differentiation of thyroid nodules: accuracy and interobserver variability assessment. J Ultrasound. 2014;17:13–20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang YF, He Y, Xu HX, et al. Virtual touch tissue imaging on acoustic radiation force impulse elastography a new technique for differential diagnosis between benign and malignant thyroid nodules. J Ultrasound Med. 2014;33:585–95.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang YF, Liu C, Xu HX, et al. Acoustic radiation force impulse imaging: a new tool for the diagnosis of papillary thyroid microcarcinoma. Biomed Res Int. 2014;2014:416969.

  6. Zhang YF, Xu JM, Xu HX, et al. Acoustic radiation force impulse elastography: a useful tool for differential diagnosis of thyroid nodules and recommending fine-needle aspiration: a diagnostic accuracy study. Medicine (Baltimore). 2015;94(42):e1834.

    Article  Google Scholar 

  7. Kwak JY, Kim EK. Ultrasound elastography for thyroid nodules: recent advances. Ultrasonography. 2014;33:75.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sporea I, Sirli R, Bota S, et al. ARFI elastography for the evaluation of diffuse thyroid gland pathology: preliminary results. World J Radiol. 2012;4:174.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hamidi C, Göya C, Hattapoğlu S, et al. Acoustic radiation force impulse (ARFI) imaging for the distinction between benign and malignant thyroid nodules. Radiol Med (Torino). 2015;120:579–83.

    Article  Google Scholar 

  10. Nightingale K, Soo MS, Nightingale R, et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28:227–35.

    Article  PubMed  Google Scholar 

  11. Liu BJ, Xu HX, Zhang YF, et al. Acoustic radiation force impulse elastography for differentiation of benign and malignant thyroid nodules with concurrent Hashimoto’s thyroiditis. Med Oncol. 2015;32:1–9.

    Article  Google Scholar 

  12. Rallison ML, Dobyns BM, Meikle AW, et al. Natural history of thyroid abnormalities: prevalence, incidence, and regression of thyroid diseases in adolescents and young adults. Am J Med. 1991;91:363–70.

    Article  CAS  PubMed  Google Scholar 

  13. Corrias A, Mussa A, Baronio F, et al. Diagnostic features of thyroid nodules in pediatrics. Arch Pediatr Adolesc Med. 2010;164:714–9.

    Article  PubMed  Google Scholar 

  14. Moon HJ, Sung JM, Kim EK, et al. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology. 2012;262:1002–13.

    Article  PubMed  Google Scholar 

  15. Brown R. Autoimmune thyroiditis in childhood. 2013.

  16. Hegedüs L. The thyroid nodule. N Engl J Med. 2004;351:1764–71.

    Article  PubMed  Google Scholar 

  17. Niedziela M. Thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2014;28:245–77.

    Article  CAS  PubMed  Google Scholar 

  18. Friedrich-Rust M, Romenski O, Meyer G, et al. Acoustic radiation force impulse-imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics. 2012;52:69–74.

    Article  PubMed  Google Scholar 

  19. Brown RS. Disorders of the thyroid gland in infancy, childhood and adolescence. 2012.

  20. Zurakowski D, Di Canzio J, Majzoub JA. Pediatric reference intervals for serum thyroxine, triiodothyronine, thyrotropin, and free thyroxine. Clin Chem. 1999;45:1087–91.

    CAS  PubMed  Google Scholar 

  21. Arda K, Ciledag N, Aktas E, et al. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am J Roentgenol. 2011;197:532–6.

    Article  Google Scholar 

  22. Vlad M, Golu I, Bota S, et al. Real-time shear wave elastography may predict autoimmune thyroid disease. Wien Klin Wochenschr. 2015;127:330–6.

    Article  CAS  PubMed  Google Scholar 

  23. Sebag F, Vaillant-Lombard J, Berbis J, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95:5281–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Sağlam.

Ethics declarations

Ethical statements

The present study was approved by the ethical committee of the hospital.

Conflict of interest

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceyhan Bilgici, M., Sağlam, D., Delibalta, S. et al. Shear wave velocity of the healthy thyroid gland in children with acoustic radiation force impulse elastography. J Med Ultrasonics 45, 75–80 (2018). https://doi.org/10.1007/s10396-017-0788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-017-0788-3

Keywords

Navigation