Skip to main content
Log in

Establishment of reference ranges for ductus venosus waveform indices in the Japanese population

  • Original Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

An Erratum to this article was published on 03 July 2013

Abstract

Objective

To establish reference ranges for ductus venosus waveform indices in the Japanese population.

Methods

In this retrospective cross-sectional study, 791 singleton fetuses of healthy Japanese couples were examined from January 2004 to January 2008. Reference ranges for ductus venosus waveform indices were constructed from cross-sectional data obtained at between 18 and 41 weeks of gestation.

Results

With a success rate of 84%, a total of 667 measurements in 791 women were eligible for analysis. The median pulsatility index (PI) of fetal ductus venosus decreased from 0.54 at 18 weeks of gestation to 0.30 at 41 weeks of gestation. The median end-diastolic velocity/peak systolic velocity (a/S) of the ductus venosus increased from 0.56 at 18 weeks of gestation to 0.76 at 41 weeks of gestation.

Conclusions

In this study, we established reference ranges for the PI and a/S of the ductus venosus in the Japanese population, which differed slightly from other published reference data. The results will be useful for further studies to determine the validity of the clinical importance of the ductus venosus for at-risk fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rizzo G, Capponi A, Arduini D, Romanini C. Ductus venosus velocity waveforms in appropriate and small for gestational age fetuses. Early Hum Dev. 1994;39:15–26.

    Article  CAS  PubMed  Google Scholar 

  2. Rudolph AM. Hepatic and ductus venosus blood flows during fetal life. Hepatology. 1983;3:254–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kiserud T. Fetal venous circulation—an update on fetal hemodynamics. J Perinat Med. 2000;28:90–6.

    Article  CAS  PubMed  Google Scholar 

  4. Haugen G, Kiserud T, Godfrey K, Crozier S, Hanson M. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol. 2004;24:599–605.

    Article  CAS  PubMed  Google Scholar 

  5. Kiserud T, Eik-Nes S, Blass HG, Hellevik LR. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet. 1991;338:1412–4.

    Article  CAS  PubMed  Google Scholar 

  6. Baschat AA, Guclu S, Kush ML, Gembruch U, Weiner CP, Harman CR. Venous Doppler in the prediction of acid-base status of growth-restricted fetuses with elevated placental blood flow resistance. Am J Obstet Gynecol. 2004;191:277–84.

    Article  PubMed  Google Scholar 

  7. Hecher K, Snijders R, Campbell S, Nicolaides KH. Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: relationship with fetal blood gases. Am J Obstet Gynecol. 1995;173:10–5.

    Article  CAS  PubMed  Google Scholar 

  8. Hecher K, Campbell S, Snijders R, Nicolaides K. Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet Gynecol. 1994;4:381–90.

    Article  CAS  PubMed  Google Scholar 

  9. Hofstaetter C, Gudmundsson S, Dubiel M, Marsál K. Ductus venosus velocimetry in high-risk pregnancies. Eur J Obstet Gynecol Reprod Biol. 1996;70:135–40.

    Article  CAS  PubMed  Google Scholar 

  10. Senat MV, Schwarzler P, Alcais A, Ville Y. Longitudinal changes in the ductus venosus, cerebral transverse sinus and cardiotocogram in fetal growth restriction. Ultrasound Obstet Gynecol. 2000;16:19–24.

    Article  CAS  PubMed  Google Scholar 

  11. Breeze AC, Lees CC. Prediction and perinatal outcomes of fetal growth restriction. Semin Fetal Neonatal Med. 2007;12:383–97.

    Article  PubMed  Google Scholar 

  12. Baschat AA. Doppler application in the delivery timing of the preterm growth-restricted fetus: another step in the right direction. Ultrasound Obstet Gynecol. 2004;23:111–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hui L, Challis D. Diagnosis and management of fetal growth restriction: the role of fetal therapy. Best Pract Res Clin Obstet Gynaecol. 2008;22:139–58.

    Article  PubMed  Google Scholar 

  14. Huisman TWA, Stewart PA, Wladimiroff JW. Ductus venosus blood flow velocity waveforms in the human fetus: a Doppler study. Ultrasound Med Biol. 1992;18:33–7.

    Article  CAS  PubMed  Google Scholar 

  15. De Vore GR, Horenstein J. Ductus venosus index: a method for evaluating right ventricular preload in the second-trimester fetus. Ultrasound Obstet Gynecol. 1993;3:338–42.

    Article  Google Scholar 

  16. Oepkes D, Vandenbussche FP, Van Bel F, Kanhai HH. Fetal ductus venosus blood flow velocities before and after transfusion in red-cell alloimmunized pregnancies. Obstet Gynecol. 1993;82:237–41.

    CAS  PubMed  Google Scholar 

  17. Nakata M. Doppler-velocity waveforms in ductus venosus in normal and small-for-gestational-age fetuses. J Obstet Gynaecol Res. 1996;22:489–96.

    CAS  PubMed  Google Scholar 

  18. Bahlmann F, Wellek S, Reinhardt I, Merz E, Steiner E, Welter C. Reference values of ductus venosus flow velocities and calculated waveform indices. Prenat Diagn. 2000;20:623–34.

    Article  CAS  PubMed  Google Scholar 

  19. Baschat AA. Relationship between placental blood flow resistance and precordial venous Doppler indices. Ultrasound Obstet Gynecol. 2003;22:561–6.

    Article  CAS  PubMed  Google Scholar 

  20. Axt-Fliedner R, Wiegank U, Fetsch C, Friedrich M, Krapp M, Georg T, Diedrich K. Reference values of fetal ductus venosus, inferior vena cava and hepatic vein blood flow velocities and waveform indices during the second and third trimester of pregnancy. Arch Gynecol Obstet. 2004;270:46–55.

    Article  CAS  PubMed  Google Scholar 

  21. Kessler J, Rasmussen S, Hanson M, Kiserud T. Longitudinal reference ranges for ductus venosus flow velocities and waveform indices. Ultrasound Obstet Gynecol. 2006;28:890–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kiserud T, Eik-Nes SH, Hellevik LR, Blaas HG. Ductus venosus—a longitudinal Doppler velocimetric study of the human fetus. J Matern Fetal Investig. 1992;2:5–11.

    Google Scholar 

  23. Royston P, Wright EM. How to construct ‘normal ranges’ for fetal variables. Ultrasound Obstet Gynecol. 1998;11:30–8.

    Article  CAS  PubMed  Google Scholar 

  24. Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22:85–93.

    Article  CAS  PubMed  Google Scholar 

  25. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Takahashi.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10396-013-0473-0.

About this article

Cite this article

Takahashi, Y., Ishii, K., Honda, K. et al. Establishment of reference ranges for ductus venosus waveform indices in the Japanese population. J Med Ultrasonics 37, 201–207 (2010). https://doi.org/10.1007/s10396-010-0269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-010-0269-4

Keywords

Navigation