Skip to main content
Log in

Reference values of fetal ductus venosus, inferior vena cava and hepatic vein blood flow velocities and waveform indices during the second and third trimester of pregnancy

  • Original Article
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

Our objective was to establish reference values for ductus venosus, inferior vena cava and hepatic vein flow velocities during ventricular systole (S-wave) and diastole (D-wave), the lowest forward velocity during atrial contraction (a-wave), the intensity-weighted mean flow velocity (Vmean) and different calculated indices.

Methods

Venous flow velocity waveforms were obtained from 329 singleton pregnancies at 20–42 weeks of gestation by pulsed-wave color Doppler. Reference values were constructed by means of a quadratic regression model after logarithmic transformation of original data.

Results

With advancing gestational age the peak velocity index for the vein (PVIV) and pulsatility index for the vein (PIV) decreased whereas blood flow velocities increased. Blood flow velocities were highest in the ductus venosus and lowest in the right hepatic vein. Values for PVIV and PIV were highest in the hepatic vein and lowest in the ductus venosus. During atrial contraction there was a blood flow towards the fetal heart in the ductus venosus, whereas in the inferior vena cava and in the hepatic vein blood flow was either in the opposite from the fetal heart (reverse flow), or there was absent flow (zero flow) or flow was towards the fetal heart (positive flow).

Conclusions

The reference ranges and calculated velocities established in this study may be utilized in studies dealing with the role of ductus venosus and inferior vena cava blood flow in fetuses with chromosomal abnormalities or congenital heart disease as well as hypoxic conditions. We speculate, that the reduction in PVIV and PIV with advancing gestational age may reflect a decrease in cardiac afterload as a result of maturation of diastolic ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Bahlmann F, Wellek S, Reinhardt I, Merz E, Steiner E, Welter C (2000) Reference values of ductus venosus flow velocities and calculated waveform indices. Prenat Diagn 20:623–634

    Article  CAS  PubMed  Google Scholar 

  2. De Vore GR, Horenstein J (1993) Ductus venosus index: a method for evaluating right ventricular preload in the second trimester fetus. Ultrasound Obstet Gynecol 3:338–342

    Article  PubMed  Google Scholar 

  3. Hecher K, Campbell S, Snijders R, Nicolaides K (1994) Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet Gynecol 4:381–390

    Article  CAS  PubMed  Google Scholar 

  4. Hecher K, Campbell S, Doyle P, Harrington K, Nicolaides K (1995) Assessment of fetal compromise by Doppler ultrasound investigation of the circulation. Circulation 91:129–138

    CAS  PubMed  Google Scholar 

  5. Huisman TWA, Stewart PA, Wladimiroff JW (1991) Flow velocity waveforms in the fetal inferior vena cava during the second half of normal pregnancy. Ultrasound Med Biol 17:679–682

    CAS  PubMed  Google Scholar 

  6. Huisman TWA, Gittenberger-De Groot AC, Wladimiroff JW (1992) Recognition of a fetal subdiaphragmatic venous vestibulum essential for fetal venous Doppler assessment. Pediatr Res 32:338–341

    CAS  PubMed  Google Scholar 

  7. Huisman TWA, Stewart PA, Wladimiroff JW (1992) Ductus venosus blood flow velocity waveforms in the human fetus—a Doppler study. Ultrasound Med Biol 18:33–37

    CAS  PubMed  Google Scholar 

  8. Huisman TWA, van den Eijnde SM, Stewart PA, Wladimiroff JW (1993) Changes in inferior vena cava blood flow velocity and diameter during breathing movements in the human fetus. Ultrasound Obstet Gynecol 3:26–30

    Article  CAS  PubMed  Google Scholar 

  9. Huisman TWA, Brezinka C, Stewart PA, Stijnen T, Wladimiroff JW (1994) Ductus venosus flow velocity waveforms in relation to fetal behavioural states. Br J Obstet Gynaecol 101:220–224

    CAS  PubMed  Google Scholar 

  10. Kanzaki T, Chiba Y (1990) Evaluation of the preload condition of the fetus by inferior vena cava blood flow pattern. Fetal Diagn Ther 5:168–174

    CAS  PubMed  Google Scholar 

  11. Kiserud T, Eik-Nes SH, Blaas HGK, Hellevik LR (1991) Ultrasonographic velocimetry of the fetal ductus venosus. Lancet 338:1412–1414

    Article  CAS  PubMed  Google Scholar 

  12. Kiserud T, Eik-Nes SH, Hellevik LR, Blaas HG (1992) Ductus venosus—a longitudinal Doppler velocimetric study of the human fetus. J Matern Fetal Invest 2:5–11

    Google Scholar 

  13. Kiserud T, Eik-Nes SH, Blaas HG, Simensen B (1994) Ductus venosus blood velocity and the umbilical circulation in the seriously growth-retarded fetus. Ultrasound Obstet Gynecol 4:109–114

    Google Scholar 

  14. Nakata M (1996) Doppler velocimetry waveforms in ductus venosus in normal and small-for-gestational age fetuses. J Obstet Gynaecol Res 22:489–496

    CAS  PubMed  Google Scholar 

  15. Reed KL, Sahn DJ, Scagnelli S, Anderson CF, Shenker F (1986) Doppler echocardiographic studies of diastolic function in the human fetal heart: changes during gestation. J Am Coll Cardiol 8:391–395

    CAS  PubMed  Google Scholar 

  16. Reed KL, Appleton CP, Anderson CF, Shenker L, Sahn DJ (1990) Doppler studies of vena cava flows in human fetuses. Insights into normal and abnormal cardiac physiology. Circulation 81:498–505

    Google Scholar 

  17. Rizzo G, Arduini D, Romanini C (1992) Inferior vena cava flow velocity waveforms in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol 166:1271–1280

    CAS  PubMed  Google Scholar 

  18. Rizzo G, Arduini D, Caforio L, Romanini C (1992) Effects of sampling sites on inferior vena cava flow velocity waveforms. J Matern Fetal Invest 2:153–156

    Google Scholar 

  19. Rizzo G, Capponi A, Arduini D, Romanini C (1994) Ductus venosus velocity waveforms in appropriate and small for gestational age fetuses. Early Hum Dev 39:15–26

    CAS  PubMed  Google Scholar 

  20. Rizzo G, Capponi A, Talone PE, Arduini D, Romanini C (1996) Doppler indices from inferior vena cava and ductus venosus in predicting pH and oxygen tension in umbilical blood at cordocentesis in growth-retarded fetuses. Ultrasound Obstet Gynecol 7:401–410

    Article  CAS  PubMed  Google Scholar 

  21. Van Splunder P, Huisman TWA, De Ridder MAJ, Wladimiroff JW (1996) Fetal venous and arterial flow velocity wave forms between eight and twenty weeks of gestation. Pediatr Res 40:158–162

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Axt-Fliedner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axt-Fliedner, R., Wiegank, U., Fetsch, C. et al. Reference values of fetal ductus venosus, inferior vena cava and hepatic vein blood flow velocities and waveform indices during the second and third trimester of pregnancy. Arch Gynecol Obstet 270, 46–55 (2004). https://doi.org/10.1007/s00404-003-0586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-003-0586-6

Keywords

Navigation