Skip to main content
Log in

Structure and motility of the esophagus from a mechanical perspective

  • Review Article
  • Published:
Esophagus Aims and scope Submit manuscript

Abstract

Esophagus is an important part of the alimentary canal that performs various functions, most important of which is the transfer of bolus from the pharynx to the stomach. This involves active contraction of both the circular and longitudinal esophageal muscles. Esophageal anatomical features are harmonized with the functional and physiological demands of esophagus. However, impairment of esophageal functions may occur resulting in symptoms like dysphagia, gastroesophageal reflux or esophageal pain. This review covers broadly the anatomical and physiological details of esophagus, mechanical function of esophagus and its motility. In particular, the mechanical characteristics of the esophageal tissue and its motile function have been scrutinized. An overlay of the diagnostic technologies tapping these metrics is also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lamb PJ, Griffin SM. The Anatomy and physiology of the esophagus. London: Springer; 2006.

    Google Scholar 

  2. Patti M, Gantert W, et al. Surgery of the esophagus. Anatomy and physiology. Surg Clin North Am. 1997;77(5):959–70.

    Article  PubMed  CAS  Google Scholar 

  3. Epstein FH. The gastroesophageal junction. N Engl J Med. 1997;336:924–32.

    Article  Google Scholar 

  4. Natali AN, Carniel EL, et al. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Med Eng Phys. 2009;31:1056–62.

    Article  PubMed  Google Scholar 

  5. Sommer G, Schriefl A, Zeindlinger G, Katzensteiner A, Ainödhofer H, Saxena A, et al. Multiaxial mechanical response and constitutive modeling of esophageal tissues: impact on esophageal tissue engineering. Acta Biomater. 2013;9:9379–91.

    Article  PubMed  CAS  Google Scholar 

  6. Yang W, TC Fung, et al. Three-dimensional finite element model of the two-layered esophagus, including the effects of residual strains and buckling of mucosa.” In: Proceedings of the institution of mechanical engineers part H-journal of engineering in medicine 2007;221(H4):417–26.

  7. Miller LS, Kim JK, et al. Mechanics and hemodynamics of esophageal varices during peristaltic contraction. Am J Physiol Gastrointest Liver Physiol. 2004;287(4):G830–5.

    Article  PubMed  CAS  Google Scholar 

  8. Liao D, Villadsen GE, Gregersen H. Distension-evoked motility analysis in human esophagus. Neurogastroenterol Motil. 2013;25(407–12):e296–7.

    Google Scholar 

  9. Egorov VI, Schastlivtsev IV, Prut EV, Baranov AO, Turusov RA. Mechanical properties of the human gastrointestinal tract. J Biomech. 2002;35:1417–25.

    Article  PubMed  Google Scholar 

  10. Choi CM, Han HY, Kim J, Cheong JN. Characterization of the biomechanical properties of the lower esophagus for surgical simulation. In: Key Eng. Mater. 2006:835–8.

  11. Goyal RK, Biancani P, et al. Mechanical properties of esophageal wall. J Clin Investig. 1971;50(7):1456.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Fung YC. Biomechanics: motion, flow, stress, and growth. New York: Springer; 1990.

    Book  Google Scholar 

  13. Gregersen H, Lee TC, Chien S, Skalak R, Fung YC. Strain distribution in the layered wall of the esophagus. J Biomech Eng. 1999;121:442.

    Article  PubMed  CAS  Google Scholar 

  14. Gregersen H. Residual strain in the gastrointestinal tract: a new concept. Neurogastroenterol Motil. 2000;12:411–4.

    Article  PubMed  CAS  Google Scholar 

  15. Fan Y, Gregersen H, Kassab GS. A two-layered mechanical model of the rat esophagus. Experiment and theory. Biomed Eng Online. 2004;3:40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cha JM, Park S-N, Noh SH, Suh H. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain. Artif Organs. 2006;30:250–8.

    Article  PubMed  CAS  Google Scholar 

  17. Nicosia MA, Brasseur JG, Liu JB, Miller LS. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1022–33.

    PubMed  CAS  Google Scholar 

  18. Dooley CP, Schlossmacher B, et al. Modulation of esophageal peristalsis by alterations of body position—effect of bolus viscosity. Dig Dis Sci. 1989;34(11):1662–7.

    Article  PubMed  CAS  Google Scholar 

  19. Dodds WJ. Current concepts of esophageal motor function—clinical implications for radiology. Am J Roentgenol. 1977;128(4):549–61.

    Article  CAS  Google Scholar 

  20. Daniels SK, Foundas AL. Swallowing physiology of sequential straw drinking. Dysphagia. 2001;16(3):176–82.

    Article  PubMed  CAS  Google Scholar 

  21. Christensen J. Mechanisms of secondary esophageal peristalsis. Am J Med. 1997;103:44S–6S.

    Article  PubMed  CAS  Google Scholar 

  22. Diamant NE. Neuromuscular mechanisms of primary peristalsis. Am J Med. 1997;103:40S–3S.

    Article  PubMed  CAS  Google Scholar 

  23. Pal A, Brasseur JG. The mechanical advantage of local longitudinal shortening on peristaltic transport. J Biomech Eng. 2002;124:94–100.

    Article  PubMed  Google Scholar 

  24. Cohen S, Green F. Mechanics of esophageal muscle-contraction—evidence of an inotropic effect of gastrin. J Clin Investig. 1973;52(8):2029–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Gravesen F, Behan N, Drewes A, Gregersen H. Viscosity of food boluses affects the axial force in the esophagus. World J Gastroenterol. 2011;17:1982–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fox M, Sweis R. Future directions in esophageal motility and function—new technology and methodology. Neurogastroenterol Motil. 2012;24(Suppl 1):48–56.

    Article  PubMed  Google Scholar 

  27. Tutuian R, Castell DO. Combined multichannel intraluminal impedance and manometry clarifies esophageal function abnormalities: study in 350 patients. Am J Gastroenterol. 2004;99:1011–9.

    Article  PubMed  Google Scholar 

  28. Mcmahon BP, Frøkjær JB, Kunwald P, Liao D, Funch-Jensen P, Drewes AM, et al. The functional lumen imaging probe (FLIP) for evaluation of the esophagogastric junction. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G377–84.

    Article  PubMed  CAS  Google Scholar 

  29. Pandolfino JE, Shi G, Trueworthy B, Kahrilas PJ. Esophagogastric junction opening during relaxation distinguishes non-hernia reflux patients, hernia patients, and normal subjects. ☆ Subjects. 2015;5085:1–7.

  30. Regan J, Walshe M, Rommel N, Tack J, McMahon BP. New measures of upper esophageal sphincter distensibility and opening patterns during swallowing in healthy subjects using EndoFLIP®. Neurogastroenterol Motil. 2013;25(1):25–34.

    Article  Google Scholar 

  31. Nguyen HN, Silny J, et al. Dynamics of esophageal bolus transport in healthy subjects studied using multiple intraluminal impedancometry. Am J Physiol Gastrointest Liver Physiol. 1997;273(4):G958–64.

    CAS  Google Scholar 

  32. Ren JL, Massey BT, et al. Determinants of intrabolus pressure during esophageal peristaltic bolus transport. Am J Physiol. 1993;264(3):G407–13.

    PubMed  CAS  Google Scholar 

  33. Rohof WO, Myers JC, Estremera FA, Ferris LS, van de Pol J, Boeckxstaens GE, et al. Inter- and intra-rater reproducibility of automated and integrated pressure-flow analysis of esophageal pressure-impedance recordings. Neurogastroenterol Motil. 2014;26:168–75.

    Article  PubMed  CAS  Google Scholar 

  34. Chen C-L, Yi C-H, Liu T-T, Hsu C-S, Omari TI. Characterization of esophageal pressure-flow abnormalities in patients with non-obstructive dysphagia and normal manometry findings. J Gastroenterol Hepatol. 2013;28:946–53.

    Article  PubMed  Google Scholar 

  35. Kaye MD, Wexler RM. Alteration of esophageal peristalsis by body position. Dig Dis Sci. 1981;26(10):897–901.

    Article  PubMed  CAS  Google Scholar 

  36. Hollis JB, Castell DO. Effect of dry swallows and wet swallows of different volumes on esophageal peristalsis. J Appl Physiol. 1975;38(6):1161–4.

    PubMed  CAS  Google Scholar 

  37. Mittal RK, Bhalla V. Oesophageal motor functions and its disorders. Gut 2004; 53(10):1536–42.

  38. Ghosh SK, Pandolfino JE, et al. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G988–97.

    Article  PubMed  CAS  Google Scholar 

  39. Ghosh SK, Pandolfino JE, et al. Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 2008;20(12):1283–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Pope CE, Horton PF. Intraluminal force transducer measurements of human esophageal peristalsis. Gut. 1972;13(6):464–70.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schoen HJ, Morris DW, et al. Esophageal peristaltic force in man—response to mechanical and pharmacological alterations. Am J Dig Dis. 1977;22(7):589–97.

    Article  PubMed  CAS  Google Scholar 

  42. Kwiatek MA, Pandolfino JE, Hirano I, Kahrilas PJ. Esophagogastric junction distensibility assessed with an endoscopic functional luminal imaging probe (EndoFLIP). Gastrointest Endosc. 2010;72:272–8.

  43. Regan J, Walshe M, Rommel N, Mcmahon BP. A new evaluation of the upper esophageal sphincter using the functional lumen imaging probe: a preliminary report. Dis Esophagus. 2013;26(2):117–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Ethical Statement

This article does not contain any studies with human or animal subjects performed by any author(s).

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murtaza Najabat Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, M., Ali, M.N., Ansari, U. et al. Structure and motility of the esophagus from a mechanical perspective. Esophagus 13, 8–16 (2016). https://doi.org/10.1007/s10388-015-0497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10388-015-0497-1

Keywords

Navigation