Skip to main content

Advertisement

Log in

Influence of axial length on ganglion cell complex (GCC) thickness and on GCC thickness to retinal thickness ratios in young adults

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The present study was designed to investigate the influence of axial length on macular ganglion cell complex (GCC) thickness and two ratio parameters—the GCC thickness to macular total retinal thickness (G/T) ratio and the GCC thickness to macular outer retinal thickness (G/O) ratio—using spectral-domain optical coherence tomography (OCT).

Methods

In this prospective case series, 74 eyes of 74 healthy Japanese study participants with varying degrees of myopia were recruited. GCC, outer retinal, and total retinal thicknesses were measured with the RTVue-100 system. The G/T and G/O ratios were also calculated. The axial length was determined using the IOLMaster. The correlation between the OCT measurements and axial length was evaluated.

Results

The average axial length was 25.05 ± 1.38 mm. The GCC thickness was significantly correlated with axial length (r = −0.384, P = 0.001). The outer retinal thickness and the total retinal thickness were significantly correlated with axial length (r = −0.444, P < 0.001 and r = −0.493, P < 0.001, respectively), but the G/T and G/O ratios were not (r = −0.093, P = 0.428 and r = −0.091, P = 0.440, respectively).

Conclusions

GCC thickness is affected by axial length. Because the prevalence of myopia is high in Japan, when determining the GCC thickness of Japanese individuals, it seems necessary to consider the axial length as well. To take account of individual variation in axial length, we propose the ratio parameters as a suitable parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shimizu N, Nomura H, Ando F, Niino N, Miyake Y, Shimokata H. Refractive errors and factors associated with myopia in an adult Japanese population. Jpn J Ophthalmol. 2003;47:6–12.

    Article  PubMed  Google Scholar 

  2. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999;106:2010–5.

    Article  CAS  PubMed  Google Scholar 

  3. Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol. 2003;135:513–20.

    Article  PubMed  Google Scholar 

  4. Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol. 2005;139:39–43.

    Article  PubMed  Google Scholar 

  5. Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol. 2007;51:197–203.

    Article  PubMed  Google Scholar 

  6. Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol. 2004;138:218–25.

    Article  PubMed  Google Scholar 

  7. Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112:391–400.

    Article  PubMed  Google Scholar 

  8. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.

    Article  PubMed  Google Scholar 

  9. Vajaranant TS, Anderson RJ, Zelkha R, Zhang C, Wilensky JT, Edward DP, et al. The relationship between macular cell layer thickness and visual function in different stages of glaucoma. Eye. 2011;25:612–8.

    Article  CAS  PubMed  Google Scholar 

  10. Leung CK, Yu M, Weinreb RN, Mak HK, Lai G, Ye C, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes. Invest Ophthalmol Vis Sci. 2012;53:7194–200.

    Article  PubMed  Google Scholar 

  11. Kim NR, Lee ES, Seong GJ, Kang SY, Kim JH, Hong S, et al. Comparing the ganglion cell complex and retinal nerve fiber layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol. 2011;95:1115–21.

    Article  PubMed  Google Scholar 

  12. Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1098–102.

    Article  PubMed  Google Scholar 

  13. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007;114:1046–52.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, et al. Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006;47:5171–6.

    Article  PubMed  Google Scholar 

  15. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma. 2009;18:501–5.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wang G, Qiu KL, Lu XH, Sun LX, Liao XJ, Chen HL, et al. The effect of myopia on retinal nerve fiber layer measurement: a comparative study of spectral-domain optical coherence tomography and scanning laser polarimetry. Br J Ophthalmol. 2011;95:255–60.

    Article  PubMed  Google Scholar 

  17. Kang SH, Hong SW, Im SK, Lee SH, Ahn MD. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4075–83.

    Article  PubMed  Google Scholar 

  18. Savini G, Barboni P, Parisi V, Carbonelli M. The influence of axial length on retinal nerve fiber layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol. 2012;96:57–61.

    Article  PubMed  Google Scholar 

  19. Öner V, Aykut V, Taş M, Alakuş MF, İşcan Y. Effect of refractive status on peripapillary retinal nerve fibre layer thickness: a study by RTVue spectral domain optical coherence tomography. Br J Ophthalmol. 2013;97:75–9.

    Article  PubMed  Google Scholar 

  20. Kim NR, Kim JH, Lee J, Lee ES, Seong GJ, Kim CY. Determinants of perimacular inner retinal layer thickness in normal eyes measured by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:3413–8.

    Article  PubMed  Google Scholar 

  21. Zhao Z, Jiang C. Effect of myopia on ganglion cell complex and peripapillary retinal nerve fibre layer measurements: a Fourier-domain optical coherence tomography study of young Chinese persons. Clin Exp Ophthalmol. 2013;41:561–6. doi:10.1111/ceo.12045.

    Article  Google Scholar 

  22. Kita Y, Kita R, Takeyama A, Takagi S, Nishimura C, Tomita G. Ability of optical coherence tomography-determined ganglion cell complex thickness to total retinal thickness ratio to diagnose glaucoma. J Glaucoma. 2012;. doi:10.1097/IJG.0b013e31825af58a.

    PubMed  Google Scholar 

  23. Kita Y, Kita R, Takeyama A, Anraku A, Tomita G, Goldberg I. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study. Clin Exp Ophthalmol. 2013;41:674–82. doi:10.1111/ceo.12089.

    Google Scholar 

  24. Tan O, Li G, Lu AT, Varma R, Huang D. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115:949–56.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Varma R, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kita Y, Kita R, Nitta A, Nishimura C, Tomita G. Glaucomatous eye macular ganglion cell complex thickness and its relation to temporal circumpapillary retinal nerve fiber layer thickness. Jpn J Ophthalmol. 2011;55:228–34.

    Article  PubMed  Google Scholar 

  27. Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.

    Google Scholar 

  28. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117:1692–9.

    Article  PubMed  Google Scholar 

  29. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51:1446–52.

    Article  PubMed  Google Scholar 

  30. Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1039–45.

    Article  PubMed  Google Scholar 

  31. Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010;19:528–34.

    Article  PubMed  Google Scholar 

  32. Girkin CA, McGwin G Jr, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, et al. Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography. Ophthalmology. 2011;118:2403–8.

    Article  PubMed  Google Scholar 

  33. Hoh ST, Lim MC, Seah SK, Lim AT, Chew SJ, Foster PJ, et al. Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology. 2006;113:773–7.

    Article  PubMed  Google Scholar 

  34. Apple DJ, Fabb MF. Clinico-pathologic correlation of ocular disease: a text and stereoscopic atlas. St. Louis: CV Mosby; 1978. p. 39–44.

    Google Scholar 

  35. Yanoff M, Fine BS. Ocular pathology: a text and atlas. Philadelphia: Harper & Row; 1982. p. 513–4.

    Google Scholar 

  36. Kanamori A, Escano MF, Eno A, Nakamura M, Maeda H, Seya R, et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica. 2003;217:273–8.

    Article  PubMed  Google Scholar 

  37. Hirasawa H, Tomidokoro A, Araie M, Konno S, Saito H, Iwase A, et al. Peripapillary retinal nerve fiber layer thickness determined by spectral-domain optical coherence tomography in ophthalmologically normal eyes. Arch Ophthalmol. 2010;128:1420–6.

    Article  PubMed  Google Scholar 

  38. Iwase A, Tomidokoro A, Araie M, Shirato S, Shimizu H, Kitazawa Y, Tajimi Study Group. Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study. Ophthalmology. 2007;114:27–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (C) 24592656 from the Ministry of Education, Culture, Sports, and Technology of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Kita.

About this article

Cite this article

Takeyama, A., Kita, Y., Kita, R. et al. Influence of axial length on ganglion cell complex (GCC) thickness and on GCC thickness to retinal thickness ratios in young adults. Jpn J Ophthalmol 58, 86–93 (2014). https://doi.org/10.1007/s10384-013-0292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-013-0292-2

Keywords

Navigation