Skip to main content
Log in

A short update on cancer chemoresistance

Chemoresistenz bei Tumorerkrankungen – eine aktuelle Übersicht

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Chemotherapeutic interventions in cancer patients are limited by the appearance of chemoresistance. For instance, advanced lung and ovarian cancer patients relapse invariably after few cycles of platinum-based chemotherapy. Disseminated tumors are characterized by genetic instability/heterogeneity, thus containing or generating a repertoire of resistant subpopulations. At the cellular level, altered drug uptake, efflux, and metabolization, as well as modifications of drug targets, increased repair, and decreased cell death complement the limited perfusion and adverse hypoxic/acidic extracellular conditions at the tumor level in retaining cancer cell viability. Similarly, targeted therapy is rendered ineffective by mutations of the specific target protein within a few months or years of administration. Assessment of the expression profiles of resistant tumor cells revealed extensive changes in numerous pathways affecting hundreds of genes. Therefore, reversal of drug resistance will require individual profiles of drug resistance mediators and the combination of several specific drugs, targeting critical components to provide new therapeutic options.

Zusammenfassung

Die Chemotherapie wird in Krebspatienten durch das Auftreten von Chemoresistenz begrenzt. Zum Beispiel rezidivieren Lungen- und Ovarialkarzinompatienten schon nach wenigen Zyklen der platinbasierten Chemotherapie. Disseminierte Tumoren weisen genetische Instabilität/Heterogenität auf und enthalten oder generieren resistente Subpopulationen. Auf der Zellebene komplementieren veränderte Wirkstoffaufnahme, -efflux und –metabolisierung, Modifikationen der Zielproteine, gesteigerte Reparaturprozesse und verminderter Zelltod die herabgesetzte Perfusion und die ungünstigen hypoxischen/azidotischen Bedingungen auf Tumorebene, die die Viabilität der Tumorzellen erhalten. In ähnlicher Weise wird bei der zielgerichteten Chemotherapie die Wirksamkeit durch Mutationen des Zielproteins innerhalb weniger Monate oder Jahre herabgesetzt. Eine Erfassung der Expressionsprofile resistenter Tumorzellen zeigen Änderungen in zahlreichen Stoffwechselwegen die hunderte Gene betreffen. Folglich verlangt die erfolgreiche Reversion der Resistenz die Erfassung individueller Profile der verantwortlichen Mediatoren und den Einsatz einer Kombination von Wirkstoffen gegen kritische Zielproteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wilson TR, Longley DB, Johnston PG. Chemoresistance in solid tumours. Ann Oncol. 2006;17:315–24.

    Article  Google Scholar 

  2. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–74.

    Article  CAS  PubMed  Google Scholar 

  3. Lippert TH, Ruoff HJ, Volm M. Current status of methods to assess cancer drug resistance. Int J Med Sci. 2011;8:245–53.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zahreddine H, Borden LB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Pinedo HM, Giaccone G. Drug resistance in the treatment of cancer. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  6. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014. pii: S0140-6736(13)62146-7.

  7. Rosell R, Cecere F, Santarpia M, Reguart N, Taron M. Predicting the outcome of chemotherapy for lung cancer. Curr Opin Pharmacol. 2006;6:323–31.

    Article  CAS  PubMed  Google Scholar 

  8. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    Article  CAS  PubMed  Google Scholar 

  9. O’Connor ML, Xiang D, Shigdar S, Macdonald J, Li Y, Wang T, Pu C, Wang Z, Qiao L, Duan W. Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett. 2014;344:180–7.

    Article  PubMed  Google Scholar 

  10. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  11. Ullah MF. Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac J Cancer Prev. 2008;9:1–6.

    PubMed  Google Scholar 

  12. Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia. 2001;15:875–90.

    Article  CAS  PubMed  Google Scholar 

  13. Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB, et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene. 2003;22:7524–36.

    Article  CAS  PubMed  Google Scholar 

  14. Longo-Sorbello GS, Bertino JR. Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica. 2001;86:121–7.

    CAS  PubMed  Google Scholar 

  15. Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract. 1996;192:768–80.

    Article  CAS  PubMed  Google Scholar 

  16. Nobili S, Landini I, Mazzei T, Mini E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev. 2012;32:1220–62.

    Article  CAS  PubMed  Google Scholar 

  17. Jedlitschky G, Leier I, Buchholz U, Barnouin K, Kurz G, Keppler D. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res. 1996;56:988–94.

    CAS  PubMed  Google Scholar 

  18. Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta. 1999;1461:377–94.

    Article  CAS  PubMed  Google Scholar 

  19. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92:1295–302.

    Article  CAS  PubMed  Google Scholar 

  20. Jäger W, Gehring E, Hagenauer B, Aust S, Senderowicz A, Thalhammer T. The role of hepatic Mrp2 in the interaction of flavopiridol and bilirubin: impact on therapy. Int J Clin Pharmacol Ther. 2003;41:610–1.

    Article  PubMed  Google Scholar 

  21. Haberl I, Swatonek H, Schaufler K, Ulsperger E, Wenzl E, Theyer G, Hamilton G, Thalhammer T. P-glycoprotein-mediated multidrug resistance is modulated by pretreatment with chemosensitizers in HCT-8 carcinoma cells in vitro. Int J Oncol. 1998;12:1137–42.

    CAS  PubMed  Google Scholar 

  22. Binkhathlan Z, Lavasanifar A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr Cancer Drug Targets. 2013;13:326–46.

    Article  CAS  PubMed  Google Scholar 

  23. Svoboda M, Riha J, Wlcek K, Jaeger W, Thalhammer T. Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab. 2011;12:139–53.

    Article  CAS  PubMed  Google Scholar 

  24. Buxhofer-Ausch V, Secky L, Wlcek K, Svoboda M, Kounnis V, Briasoulis E, Tzakos AG, Jaeger W, Thalhammer T. Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. J Drug Deliv. 2013;2013:863539.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Svoboda M, Wlcek K, Taferner B, Hering S, Stieger B, Tong D, Zeillinger R, Thalhammer T, Jäger W. Expression of organic anion-transporting polypeptides 1B1 and 1B3 in ovarian cancer cells: relevance for paclitaxel transport. Biomed Pharmacother. 2011;65:417–26.

    Article  CAS  PubMed  Google Scholar 

  26. Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol. 2012;52:135–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M, et al. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood. 2006;107:2517–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002;13:1841–51.

    Article  CAS  PubMed  Google Scholar 

  29. Bardenheuer W, Lehmberg K, Rattmann I, Brueckner A, Schneider A, Sorg UR, et al. Resistance to cytarabine and gemcitabine and in vitro selection of transduced cells after retroviral expression of cytidine deaminase in human hematopoietic progenitor cells. Leukemia. 2005;19:2281–8.

    Article  CAS  PubMed  Google Scholar 

  30. Platzer P, Thalhammer T, Hamilton G, Ulsperger E, Rosenberg E, Wissiack R, Jäger W. Metabolism of camptothecin, a potent topoisomerase I inhibitor, in the isolated perfused rat liver. Cancer Chemother Pharmacol. 2000;45:50–4.

    Article  CAS  PubMed  Google Scholar 

  31. Meijer C, Mulder NH, Timmer-Bosscha H, Sluiter WJ, Meersma GJ, De Vries EG. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res. 1992;52:6885–9.

    CAS  PubMed  Google Scholar 

  32. Miksits M, Wlcek K, Svoboda M, Kunert O, Haslinger E, Thalhammer T, Szekeres T, Jäger W. Antitumor activity of resveratrol and its sulfated metabolites against human breast cancer cells. Planta Med. 2009;75:1227–30.

    Article  CAS  PubMed  Google Scholar 

  33. Aust S, Obrist P, Klimpfinger M, Tucek G, Jäger W, Thalhammer T. Altered expression of the hormone- and xenobiotic-metabolizing sulfotransferase enzymes 1A2 and 1C1 in malignant breast tissue. Int J Oncol. 2005;26:1079–85.

    CAS  PubMed  Google Scholar 

  34. Kelley SL, Basu A, Teicher BA, Hacker MP, Hamer DH, Lazo JS. Overexpression of metallothionein confers resistance to anticancer drugs. Science. 1988;241:1813–5.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Villalona-Calero MA. Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol. 2002;13:1841–51.

    Article  CAS  PubMed  Google Scholar 

  36. Olszewski U, Liedauer R, Ausch C, Thalhammer T, Hamilton G. Overexpression of CYP3A4 in a COLO 205 colon cancer stem cell model in vitro. Cancers (Basel). 2011;3:1467–79.

    Article  CAS  Google Scholar 

  37. Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science. 2002;297:63–4.

    Article  CAS  PubMed  Google Scholar 

  38. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349:1423–32.

    Article  CAS  PubMed  Google Scholar 

  39. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  40. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann WK, Komor M, Wassmann B, Jones LC, Gschaidmeier H, Hoelzer D, et al. Presence of the BCR–ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood. 2003;102:659–61.

    Article  CAS  PubMed  Google Scholar 

  42. Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res. 2006;66:7854–8.

    Article  CAS  PubMed  Google Scholar 

  43. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science. 2001;293:876–80.

    Article  CAS  PubMed  Google Scholar 

  44. Blencke S, Ullrich A, Daub H. Mutation of threonine 766 in the epidermal growth factor receptor reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors. J Biol Chem. 2003;278:15435–40.

    Article  CAS  PubMed  Google Scholar 

  45. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 2000;95:1758–66.

    CAS  PubMed  Google Scholar 

  46. Nijman SM. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 2011;585:1–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7.

    Article  CAS  PubMed  Google Scholar 

  48. Montoni A, Robu M, Pouliot E, Shah GM. Resistance to PARP-inhibitors in cancer therapy. Front Pharmacol. 2013;4:18.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Fodale V, Pierobon M, Liotta L, Petricoin E. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J. 2011;17:89–95.

    Article  CAS  PubMed  Google Scholar 

  50. Thalhammer T, Kieffer LJ, Jiang T, Handschumacher RE. Isolation and partial characterization of membrane-associated cyclophilin and a related 22-kDa glycoprotein. Eur J Biochem. 1992;206:31–7.

    Article  CAS  PubMed  Google Scholar 

  51. Hamilton G. Cyclophilin A as a target of Cisplatin chemosensitizers. Curr Cancer Drug Targets. 2014;14:46–58.

    Article  CAS  PubMed  Google Scholar 

  52. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  53. Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805:105–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Lu HP, Chao CC. Cancer cells acquire resistance to anticancer drugs: an update. Biomed J. 2012;35:464–72.

    Article  PubMed  Google Scholar 

  55. Hamilton G, Olszewski U. Chemotherapy-induced enrichment of cancer stem cells in lung cancer. J Bioanal Biomed. 2013;S9:003.

    Google Scholar 

  56. Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012;13:9545–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Hamilton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, G., Rath, B. A short update on cancer chemoresistance. Wien Med Wochenschr 164, 456–460 (2014). https://doi.org/10.1007/s10354-014-0311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-014-0311-z

Keywords

Schlüsselwörter

Navigation