Skip to main content

Advertisement

Log in

Microbial carbonates and corals on the marginal French Jura platform (Late Oxfordian, Molinges section)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Molinges was located on an Upper Jurassic ramp system of low-energy regime that developed at the southern margin of the French Jura platform. The sedimentary succession is characterized by the transition from a mixed siliciclastic-carbonate to a carbonate depositional setting that occurred during a long-term shallowing-upward trend. The disappearance of siliciclastics is explained by a climatic change, from humid and cold to drier and warmer conditions, previously identified in Late Oxfordian adjacent basins. The base of the section shows marl-limestone alternations of outer ramp. In its middle part, the section displays oncolitic marls, coral-microbialite beds and oncolitic limestones that deposited in a mid ramp position. Finally, the upper section part is made of oolitic limestones of inner ramp. In outer- to mid-ramp settings submitted to terrigenous inputs, the stacking pattern of deposits and facies evolution allow the identification of elementary, small-, medium-, and large-scale sequences. Small amplitudes of sea-level variations probably controlled rapid shifts of facies belts and reef window occurrences. In small-scale sequences, the coral beds developed during periods of sea-level rise. The decreasing rate of sea-level rise is marked by the downramp shift of the oncolitic limestone belt that led to the demise of coral-microbialite beds. These bioconstructions are mainly represented by thin biostromes in which corals never reach great sizes. The coral assemblages mainly include the genera Enallhelia, Dimorpharaea, Thamnasteria, and some solitary forms (Montlivaltia and Epistreptophyllum). They suggest relatively low-mesotrophic conditions in marine waters during the edification of the primary framework. Relatively cold water temperatures and periods of more elevated nutrient contents are probably responsible of the reduced coral development and the formation of a large amount of microbialites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adachi N, Ezaki Y, Pickett JW (2007) Interrelations between framework-building and encrusting skeletal organisms and microbes: more-refined growth history of Lower Devonian bindstones. Sedimentology 54:89–105

    Article  Google Scholar 

  • Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sediment Petrol 37:1163–1178

    Google Scholar 

  • Aurell M, Bosence DWJ, Waltham DA (1995) Carbonate ramp depositional systems from a Late Jurassic epeiric platform (Iberian Basin, Spain): a combined computer modelling and outcrop analysis. Sedimentology 42:75–94

    Article  Google Scholar 

  • Bádenas B, Aurell M (2010) Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain). Facies 56:89–110

    Article  Google Scholar 

  • Bartolini A, Pittet B, Mattioli E, Hunziker JC (2003) Shallow-platform palaeoenvironmental conditions recorded in deep-shelf sediments: C and O stable isotopes in Upper Jurassic sections of southern Germany (Oxfordian-Kimmeridgian). Sediment Geol 160(1–3):107–130

    Article  Google Scholar 

  • Bernier P (1973) Mise en évidence de deux séquences sédimentaires dans le Kimméridgien-Portlandien de la région de Molinges (Jura). Eclogae Geol Helv 66:345–349

    Google Scholar 

  • Bernier P (1984) Les formations carbonatées du Kimméridgien et du Portlandien dans le Jura méridional (stratigraphie, micropaléontologie, sédimentologie). Doc Lab Géol Lyon 92:731

    Google Scholar 

  • Bernier P (2002) Commentaire à la note: “Une faune d’ammonites inédite du Kimméridgien inférieur à Molinges (Jura) et la limite Oxfordien-Kimméridgien dans le faisceau externe du Jura méridional”. Géologie de la France 3:60–62

    Google Scholar 

  • Bertling M (1993) Ecology and distribution of the Late Jurassic scleractinian Thamnasteria concinna (Goldfuss) in Europe. Palaeogeogr Palaeoclimatol Palaeoecol 105:311–335

    Article  Google Scholar 

  • Bertling M (1995) Autecological case study of late Jurassic Thamnasteria (Scleractinia) species with small corallites. In: Lathuilière B, Geister J (eds) Coral reefs in the past, present and future. Publ Serv Geol Luxembourg, Luxembourg, 29:111–117

  • Bertling M, Insalaco E (1998) Late Jurassic coral/microbial reefs from the northern Paris Basin: facies, palaeoecology and palaeobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol 139:139–175

    Article  Google Scholar 

  • Betzler C, Pawellek T, Abdullah M, Kossler A (2007) Facies and stratigraphic architecture of the Korallenoolith Formation in north Germany (Lauensteiner Pass Ith Mountains). Sediment Geol 194:61–75

    Article  Google Scholar 

  • Braga JC, Martin JM, Riding R (1995) Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain. Palaios 10:347–361

    Article  Google Scholar 

  • Brehm U, Palinska KA, Krumbein WE (2004) Laboratory cultures of calcifying biomicrospheres generate ooids—a contribution to the origin of oolites. Notebooks on Geology, pp 1–6

  • Brehm U, Krumbein WE, Palinska KA (2006) Biomicrospheres generate ooids in the laboratory. Geomicrobiol J 23:545–550

    Article  Google Scholar 

  • Brigaud B, Pucéat E, Pellenard P, Vincent B, Joachimski MM (2008) Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian-Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells. Earth Planet Sci Lett 273:58–67

    Article  Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57

    Article  Google Scholar 

  • Camoin GF, Cabioch G, Eisenhauer A, Braga JC, Hamelin B, Lericolais G (2006) Environmental significance of microbialites in reef environments during the last deglaciation. Sediment Geol 185:277–295

    Article  Google Scholar 

  • Carpentier C, Martin-Garin B, Lathuilière B, Ferry S (2006) Correlation of reefal Oxfordian episodes and climatic implications in the eastern Paris Basin (France). Terra Nova 18:191–201

    Article  Google Scholar 

  • Čatalov GA (1983) Triassic oncoids from Central Balkanides (Bulgaria). In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 398–408

    Google Scholar 

  • Cecca F, Martin-Garin B, Marchand D, Lathuilière B, Bartolini A (2005) Paleoclimatic control of biogeographic and sedimentary events in Tethys and peri-Tethys areas during the Oxfordian (Late Jurassic). Palaeogeogr Palaeoclimatol Palaeoecol 222:10–32

    Article  Google Scholar 

  • Cochet F (1994) Stratigraphie séquentielle dans les carbonates de l’Oxfordien terminal-Kimméridgien du Jura français. Université Claude Bernard, Lyon 1, Lyon, p 200

  • Cole AR, Palmer TJ (1999) Middle Jurassic worm borings, and a new giant ichnospecies of Trypanites from the Bajocian/Dinantian unconformity, southern England. Proc Geol Ass 110:203–209

    Article  Google Scholar 

  • Dahanayake K (1977) Classification of oncoids from the Upper Jurassic carbonates of the French Jura. Sediment Geol 18:337–353

    Article  Google Scholar 

  • Delecat S, Reitner J (2005) Sponge communities from the Lower Liassic of Adnet (Northern Calcareous Alps, Austria). Facies 51:399–418

    Article  Google Scholar 

  • Delecat S, Peckmann J, Reitner J (2001) Non-rigid cryptic sponges in oyster patch reefs (Lower Kimmeridgian, Langenberg/Oker, Germany). Facies 45:231–254

    Article  Google Scholar 

  • Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) (2000) Atlas Peri-Tethys—Palaeogeographical maps. Commission of the Geological Map of the World, Paris

    Google Scholar 

  • Dromart G, Gaillard C, Jansa LF (1994) Deep-marine microbial structures in the Upper Jurassic of western Tethys. In: Bertrand-Sarfati J, Monty CLV (eds) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 295–318

    Google Scholar 

  • Droxler AW, Schlager W (1985) Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology 13:799–802

    Article  Google Scholar 

  • Dupraz C, Strasser A (1999) Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies 40:101–130

    Article  Google Scholar 

  • Dupraz C, Strasser A (2002) Nutritional modes in coral-microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change. Palaios 17:449–471

    Article  Google Scholar 

  • Dupraz C, Reid PR, Braissant O, Decho AW, Norman SR, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  Google Scholar 

  • Enay R (2000) Une faune d’ammonites inédite du Kimméridgien inférieur à Molinges (Jura) et la limite Oxfordien-Kimméridgien dans le faisceau externe du Jura méridional. Géologie de la France 4:3–19

    Google Scholar 

  • Enay R, Contini D, Boullier A (1988) Le Séquanien-type de Franche-Comté (Oxfordien supérieur): datations et corrélations nouvelles, conséquences sur la paléogéographie et l’évolution du Jura et régions voisines. Eclogae Geol Helv 81:295–363

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Berlin Heidelberg New York, p 976

    Google Scholar 

  • Fritz GK (1958) Schwammstotzen, Tuberolithe und Schuttbreccien im Weissen Jura der Schwäbischen Alb. Arb Geol Paläont Inst 13:1–118

    Google Scholar 

  • Gaillard C (1983) Les biohermes à spongiaires et leur environnement dans l’Oxfordien du Jura méridional. Doc Lab Géol Lyon 90:515

    Google Scholar 

  • Geister J, Lathuilière B (1991) Jurassic coral reefs of the northeastern Paris Basin (Luxembourg and Lorraine). In: 6th int symp Fossil Cnidaria including Archaeocyatha and Porifera. September 1991, Munster, p 112

  • Gill GA, Santantonio M, Lathuilière B (2004) The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sediment Geol 166:311–334

    Article  Google Scholar 

  • Gradziński M, Tyszka J, Uchman A, Jach R (2004) Large microbial—foraminiferal oncoids from condensed Lower-Middle Jurassic deposits: a case study from the Tatra Mountains, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 213:133–151

    Google Scholar 

  • Gygi RA (1986) Eustatic sea-level changes of the Oxfordian (Late Jurassic) and their effects documented in sediments and fossil assemblages of an epicontinental sea. Eclogae Geol Helv 79:455–491

    Google Scholar 

  • Gygi RA (1992) Structure, pattern of distribution and paleobathymetry of Late Jurassic microbialites (stromatolites and oncoids) in northern Switzerland. Eclogae Geol Helv 85:799–824

    Google Scholar 

  • Handford CR, Loucks RG (1993) Carbonate depositional sequences and systems tracts responses of carbonate platforms to relative sea-level changes. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy. Am Assoc Petrol Geol Mem 57:3–41

  • Hug W (2003) Sequenzielle Faziesentwicklung der Karbonatplattform des Schweizer Jura im Späten Oxford und frühesten Kimmeridge. GeoFocus 7, Univ. Fribourg, p 155

  • Insalaco E (1996) Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. Palaeogeogr Palaeoclimatol Palaeoecol 121:169–194

    Article  Google Scholar 

  • James NP, Bourque PA (1992) Reefs and mounds. In: Walker RG, James NP (eds) Facies models—response to sea level change. Assoc Geol Can:323–347

  • James NP, Collins LB, Bone Y, Hallock P (1999) Rottnest Shelf to Ningaloo Reef cool-water to warm-water carbonate transition on the continental shelf of Western Australia. J Sediment Res 69:1297–1321

    Google Scholar 

  • Kennard JM, James NP (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  • Lathuilière B (2000) Coraux constructeurs du Bajocien inférieur de France, 2ème partie. Geobios 33:153–181

    Article  Google Scholar 

  • Lathuilière B, Gaillard C, Habrant N, Bodeur I, Boullier A, Enay R, Hanzo M, Marchand D, Thierry J, Werner W (2005) Coral zonation of an Oxfordian reef tract in the northern French Jura. Facies 50:545–559

    Article  Google Scholar 

  • Lathuilière B, Geister J, Tkhorzhevsky ES, Yudin S, Martin-Garin B (2007) Oxfordian coral communities of the Donets basin (Ukraine) and their paleoclimatic significance. In: Xth international congress on Fossil Cnidaria and Porifera, St. Petersburg. 12–16 August 2007, pp 56–57

  • Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Publishers, New York, pp 251–302

    Chapter  Google Scholar 

  • Leinfelder RR, Schmid DU (2000) Mesozoic reefal thrombolites and other microbolites. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 289–294

    Google Scholar 

  • Leinfelder RR, Nose M, Schmid DU, Werner W (1993) Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. Facies 29:195–230

    Article  Google Scholar 

  • Leinfelder RR, Krautter M, Laternser R, Nose M, Schmid DU, Schweigert G, Werner W, Keupp H, Brugger H, Herrmann R, Rehfeld-Kiefer U, Schroeder JH, Reinhold C, Koch R, Zeiss A, Schweizer V, Christmann H, Menges G, Luterbacher H (1994) The origin of Jurassic reefs: current research developments and results. Facies 31:1–56

    Article  Google Scholar 

  • Leinfelder RR, Werner W, Nose M, Schmid DU, Krautter M, Laternser R, Takacs M, Hartmann D (1996) Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the Late Jurassic. In: Reitner J, Neuweiler F, Gunkel F (eds) Global and regional controls on biogenic sedimentation. I Reef Evolution Res Reports. Göttinger Arb Geol Palaëont Sb2:227–248

  • Leinfelder RR, Schmid DU, Nose M, Werner W (2002) Jurassic reef patterns—the expression of a changing globe. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:465–520

  • Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. J Geol 72:68–83

    Article  Google Scholar 

  • Martin-Garin B (2005) Climatic control of Oxfordian coral reef distribution in the Tethys Ocean. Doctoral dissertation, University Berne-Nancy, p 263

  • Martin-Garin B, Lathuilière B, Geister J, Chellai H, Huault V (2007) Geology, facies model and corals association of the Late Jurassic reef complex at Cape Ghir (Atlantic High Atlas, Morocco). C R Geosci 339:65–74

    Article  Google Scholar 

  • Mei M (2007) Revised classification of microbial carbonates: complementing the classification of limestones. Earth Sci Front 14:222–232

    Article  Google Scholar 

  • Moore GT, Hayashida DN, Ross CA, Jacobson SR (1992) Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: I. Results using a general circulation model. Palaeogeogr Palaeoclimatol Palaeoecol 93:113–150

    Article  Google Scholar 

  • Mutti M, Hallock P (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int J Earth Sci 92:465–475

    Article  Google Scholar 

  • Nose M (1995) Vergleichende Faziesanalyse und Palökologie korallenreicher Verflachungsabfolgen des iberischen Oberjura. Profil 8:1–237

    Google Scholar 

  • Olivier N, Boyet M (2006) Rare earth and trace elements of microbialites in Upper Jurassic coral- and sponge-microbialite reefs. Chem Geol 230:105–123

    Article  Google Scholar 

  • Olivier N, Hantzpergue P, Gaillard C, Pittet B, Leinfelder R, Schmid DU, Werner W (2003) Microbialite morphology, structure and growth: a model of the Upper Jurassic reefs of the Chay Peninsula (western France). Palaeogeogr Palaeoclimatol Palaeoecol 193:383–404

    Article  Google Scholar 

  • Olivier N, Carpentier C, Martin-Garin B, Lathuilière B, Gaillard C, Ferry S, Hantzpergue P, Geister J (2004a) Coral-microbialite reefs in pure carbonate versus mixed carbonate-siliciclastic depositional environments: the example of the Pagny-sur-Meuse section (Upper Jurassic, northeastern France). Facies 50:229–255

    Article  Google Scholar 

  • Olivier N, Pittet B, Mattioli E (2004b) Paleoenvironmental control on sponge-reefs and contemporaneous deep-shelf marl-limestone deposition (Late Oxfordian, southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 212:233–263

    Google Scholar 

  • Olivier N, Lathuilière B, Thiry-Bastien P (2006) Growth models of Bajocian coral-microbialite reefs of Chargey-lès-Port (eastern France): palaeoenvironmental interpretations. Facies 52:113–126

    Article  Google Scholar 

  • Olivier N, Pittet M, Gaillard C, Hantzpergue P (2007) High-frequency palaeoenvironmental fluctuations recorded in Jurassic coral- and sponge-microbialite bioconstructions. CR Palevol 6:21–36

    Article  Google Scholar 

  • Olivier N, Pittet B, Werner W, Hantzpergue P, Gaillard C (2008) Facies distribution and coral-microbialite reef development on a low-energy carbonate ramp (Chay Peninsula, Kimmeridgian, western France). Sediment Geol 205:14–33

    Article  Google Scholar 

  • Oschmann W (1990) Environmental cycles in the Late Jurassic northwest European epeiric basin: interaction with atmospheric and hydrospheric circulations. Sediment Geol 69:313–332

    Article  Google Scholar 

  • Pandey DK, Fürsich FT (2003) Jurassic corals of east-central Iran. Beringeria 32:3–138

    Google Scholar 

  • Pittet B (1994) Modèle d’estimation de la subsidence et des variations du niveau marin: un exemple de l’Oxfordien du Jura suisse. Eclogae Geol Helv 87:513–543

    Google Scholar 

  • Pittet B (1996) Contrôles climatiques, eustatiques et tectoniques sur des systèmes mixtes carbonates-siliciclastiques de plate-forme: exemple de l’Oxfordien (Jura Suisse, Normandie, Espagne). Thèse Univ Fribourg, Fribourg, p 258

    Google Scholar 

  • Pittet B, Mattioli E (2002) The carbonate signal and calcareous nannofossil distribution in an Upper Jurassic section (Balingen-Tieringen, Late Oxfordian, southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 179:71–96

    Article  Google Scholar 

  • Pittet B, Strasser A (1998a) Depositional sequences in deep-shelf environments formed through carbonate mud import from shallow platform (Late Oxfordian, German Swabian Alb and eastern Swiss Jura). Eclogae Geol Helv 91:149–169

    Google Scholar 

  • Pittet B, Strasser A (1998b) Long-distance correlations by sequence stratigraphy and cyclostratigraphy: examples and implications (Oxfordian from the Swiss Jura, Spain, and Normandy). Geol Rundsch 86:852–874

    Article  Google Scholar 

  • Pittet B, Strasser A, Mattioli E (2000) Depositional sequences in deep-shelf environments: a response to sea-level changes and shallow-platform carbonate productivity (Oxfordian, Germany and Spain). J Sediment Res 70:392–407

    Article  Google Scholar 

  • Pomar L (2001a) Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Island. Palaeogeogr Palaeoclimatol Palaeoecol 175:249–272

    Article  Google Scholar 

  • Pomar L (2001b) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334

    Article  Google Scholar 

  • PSUCLIM (1999) Storm activity in ancient climates 1. Sensitivity of severe storms to climate forcing factors on geologic timescales. J Geophys Res 104:27,277–27293

    Google Scholar 

  • Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia): formation and concepts. Facies 29:3–40

    Article  Google Scholar 

  • Reolid M (2007) Taphonomy of the Oxfordian-Lowermost Kimmeridgian siliceous sponges of the Prebetic Zone (Southern Iberia). J Taphonomy 5:71–90

    Google Scholar 

  • Reolid M, Gaillard C, Olóriz F, Rodríguez-Tovar FJ (2005) Microbial encrustations from the Middle Oxfordian-earliest Kimmeridgian lithofacies in the Prebetic Zone (Betic Cordillera, southern Spain): characterization, distribution and controlling factors. Facies 50:529–543

    Article  Google Scholar 

  • Reolid M, Molina JM, Löser H, Navarro V, Ruiz-Ortiz PA (2009) Coral biostromes of the Middle Jurassic from the Subbetic (Betic Cordillera, southern Spain): facies, coral taxonomy, taphonomy, and palaeoecology. Facies 55:575–593

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214

    Article  Google Scholar 

  • Riding R (2002) Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth Sci Rev 58:163–231

    Article  Google Scholar 

  • Samankassou E, Strasser A, Di Gioia E, Rauber G, Dupraz C (2003) High-resolution record of lateral variations on a shallow carbonate platform (Upper Oxfordian, Swiss Jura Mountains). Eclogae Geol Helv 96:425–440

    Google Scholar 

  • Sanders D, Baron-Szabo RC (2005) Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. Palaeogeogr Palaeoclimatol Palaeoecol 216:139–181

    Article  Google Scholar 

  • Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464

    Article  Google Scholar 

  • Schlager W, Reijmer JJG, Droxler AW (1994) Highstand shedding of carbonate platforms. J Sediment Res 64:270–281

    Google Scholar 

  • Schlagintweit F (2008) Bioerosional structures and pseudoborings from Late Jurassic and Late Cretaceous-Paleocene shallow-water carbonates (Northern Calcareous Alps, Austria and SE France) with special reference to cryptobiotic foraminifera. Facies 54:377–402

    Article  Google Scholar 

  • Schlagintweit F, Gawlick H-J (2009) Oncoid-dwelling foraminifera from Late Jurassic shallow-water carbonates of the Northern Calcareous Alps (Austria and Germany). Facies 55:259–266

    Article  Google Scholar 

  • Schmid DU (1996) Marine Mikrobolithe und Mikroinkrustierer aus dem Oberjura. Profil 9:101–251

    Google Scholar 

  • Shapiro RS (2000) A comment on the systematic confusion of thrombolites. Palaios 15:166–169

    Google Scholar 

  • Sprachta S, Camoin G, Golubic S, Le Campion Th (2001) Microbialites in a modern lagoonal environment: nature and distribution, Tikehau Atoll (French Polynesia). Palaeogeogr Palaeoclimatol Palaeoecol 175:103–124

    Article  Google Scholar 

  • Strasser A (1986) Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33:711–737

    Article  Google Scholar 

  • Strasser A (2007) Astronomical time scale for the Middle Oxfordian to Late Kimmeridgian in the Swiss and French Jura Mountains. Swiss J Geosci 100:407–429

    Article  Google Scholar 

  • Strasser A, Samankassou E (2003) Carbonate sedimentation rates today and in the past: Holocene of Florida Bay, Bahamas, and Bermuda versus Upper Jurassic and Lower Cretaceous of the Jura Mountains (Switzerland and France). Geol Croat 56:1–18

    Google Scholar 

  • Strasser A, Pittet B, Hillgärtner H, Pasquier JB (1999) Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis. Sediment Geol 128:201–221

    Article  Google Scholar 

  • Védrine S, Strasser A (2009) High-frequency palaeoenvironmental changes on a shallow carbonate platform during a marine transgression (Late Oxfordian, Swiss Jura Mountains). Swiss J Geosci 102:247–270

    Article  Google Scholar 

  • Védrine S, Strasser A, Hug W (2007) Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies 53:535–552

    Article  Google Scholar 

  • Verrecchia EP, Freytet P, Julien J, Baltzer F (1997) The unusual hydrodynamical behaviour of freshwater oncolites. Sediment Geol 113:225–243

    Article  Google Scholar 

  • Walther J (1893/1894) Einleitung in die Geologie als Historische Wissenschaft. Lithogenesis der Gegenwart 3:535–1055, Jena (Fischer)

  • Westphal HK, Heindel K, Brandano M, Peckmann J (2010) Genesis of microbialites as contemporaneous framework components of deglacial coral reefs, Tahiti (IODP 310). Facies 56:337–352

    Article  Google Scholar 

  • Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta Basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181:127–151

    Article  Google Scholar 

  • Wright VP (1983) Morphogenesis of oncoids in the Lower Carboniferous Llanelly Formation of South Wales. In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 424–434

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the National Science Research Council of France (UMR CNRS 5125 “Paléoenvironnements et paléobiosphère”, Lyon). The authors are grateful to Elsa Cariou and Raymond Enay for the ammonite sampling and determination. We are grateful to Gishlaine Broillet for thin-section preparation. Stéphanie Védrine, Beatriz Bádenas and André Freiwald are acknowledged for their comments which greatly improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Olivier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivier, N., Colombié, C., Pittet, B. et al. Microbial carbonates and corals on the marginal French Jura platform (Late Oxfordian, Molinges section). Facies 57, 469–492 (2011). https://doi.org/10.1007/s10347-010-0246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-010-0246-9

Keywords

Navigation