Skip to main content

Advertisement

Log in

Combined numerical investigation of the Gangda paleolandslide runout and associated dam breach flood propagation in the upper Jinsha River, SE Tibetan Plateau

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

A large paleolandslide occurred opposite the Gangda village in the upper Jinsha River, SE Tibetan Plateau. Field geological investigations and remote sensing indicated that the Gangda paleolandslide once blocked the Jinsha River. Evidence of river blocking, including landslide dam relics, upstream lacustrine sediments, and downstream outburst sediments, has been well preserved. To understand the river-blocking event including landslide, dam breach, and associated outburst flooding, optically stimulated luminescence (OSL) dating and numerical simulations were performed in this study. OSL dating results showed that the paleolandslide dam was formed at 5.4 ± 0.5 ka BP and breached at 3.4 ± 0.3 ka BP, indicating that the dam lasted approximately 2000 years. The discrete element method was used to simulate the dynamics of the Gangda rock landslide based on the restored topography, while a fluid–solid coupling model was performed to simulate the landslide dam breaching and flooding. The fluid–solid coupling model can simultaneously reflect the process of landslide-dam collapse and the propagation of outburst flood. The simulated results indicate that the whole landslide process lasted about 60 s with a peak velocity of 38 m/s. It is significant that the simulated morphology of the residual landslide dam and downstream outburst sediments is consistent with the field observations. The combined numerical investigation in this paper provided new insights into the research of landscape evolution and helped to understand the chain disaster of landslide, dam breach, and flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  • Bao YD, Zhai SJ, Chen JP, Xu PH, Sun XH, Zhan JW, Zhang W, Zhou X (2020) The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology 351, 106970

  • Chen FH, Yu ZC, Yang ML, Ito E, Wang SM, Madsen D, Huang XZ, Zhao Y, Sato T, Birks H, Boomer I, Chen JH, An CB, Wünnenmann B (2008a) Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Sicence Review 27(3/4):351–364

    Article  Google Scholar 

  • Chen J, Dai FC, Yao X (2008b) Holocene debris-flow deposits and their implications on climate in the upper Jinsha River valley, China. Geomorphology 93:493–500

    Article  Google Scholar 

  • Chen J, Dai FC, Lv TY, Cui ZJ (2013) Holocene landslide–dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages. Quatern Int 298:107–113

    Article  Google Scholar 

  • Chen J, Zhou WD, Cui ZJ, Li WC, Wu SE, Ma JX (2018) Formation process of a large paleolandslide-dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan Plateau: constraints from OSL and 14C dating. Landslides 15:2399–2412

    Article  Google Scholar 

  • Chen KT, Wu JH (2018) Simulating the failure process of the Xinmo landslide using discontinuous deformation analysis. Eng Geol 239:269–281

    Article  Google Scholar 

  • Clemens S, Prell W, Murray D, Shimmield G, Weedon G (1991) Forcing mechanisms of the Indian Ocean monsoon. Nature 353(6346):720–725

    Article  Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Bulletin of the Geological Society of America 100(7):1054–1068

    Article  Google Scholar 

  • Cui ZJ, Gao QZ, Liu GN, Pan BT, Chen HL (1996) Planation surfaces, palaeokarst and uplift of Xizang (Tibet) Plateau. Sci China, Ser D Earth Sci 39(4):391–400

    Google Scholar 

  • Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Delaney KB, Evans SG (2015) The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: review, remote sensing analysis, and process modelling. Geomorphology 246:377–393

    Article  Google Scholar 

  • Denton GH, Karlén W (1973) Holocene climatic variations—their pattern and possible cause. Quatern Res 3(2):155–205

    Article  Google Scholar 

  • Du GL, Zhang YS, Yang ZH, Javed I, Tong B, Guo CB, Yao X, Wu R (2017) Estimation of seismic landslide hazard in the eastern Himalayan Syntaxis region of Tibetan Plateau. Acta Geol Sin 91:658–668

    Article  Google Scholar 

  • Ersoy H, Karahan M, Gelişli K, Akgün A, Anılan T, Sünnetci MO, Yahşi BK (2019) Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng Geol 249:112–128

    Article  Google Scholar 

  • Fan XM, Yang F, Siva Subramanian S, Xu Q, Feng ZT, Mavrouli O, Peng M, Ouyang CJ, Jansen JD, Huang RQ (2019a) Prediction of a multi-hazard chain by an integrated numerical simulation approach: the Baige landslide, Jinsha River, China. Landslides 17:147–164

    Article  Google Scholar 

  • Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE, Zhang L, Evans SG, Xu C, Li G, Pei X, Xu Q, Huang R (2019b) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Reviews of Geophysics 0

  • Fan X, Xu Q, Alonso-Rodriguez A, Siva Subramanian S, Li W, Zheng G, Dong X, Huang R (2019c) Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides 16:1003–1020

    Article  Google Scholar 

  • Fan X, Dufresne A, Siva Subramanian S, Strom A, Hermanns R, Tacconi Stefanelli C, Hewitt K, Yunus AP, Dunning S, Capra L, Geertsema M, Miller B, Casagli N, Jansen JD, Xu Q (2020) The formation and impact of landslide dams – state of the art. Earth-Science Reviews 203, 103116

  • Ferrer C (1999) Represamientos y rupturas de embalses naturales (lagunas de obstrución) como efectos cosísmicos: Algunos ejemplos en los Andes venezolanos. Revista Geográfica Venezolana 40:109–121

    Google Scholar 

  • Flow Science (2016) FLOW-3D V11.2 user’s manual. Flow Science Inc, Los Alamos

  • Gasse F, Arnold M, Fontes J, Fort M, Zhang QS (1991) A 13000-year climate record from western Tibet. Nature 353(6346):742–745

    Article  Google Scholar 

  • Ghazizadeh F, Moghaddam MA (2016) An experimental and numerical comparison of flow hydraulic parameters in circular crested weir using Flow3D. Civil Engineering Journal 2:23–37

    Article  Google Scholar 

  • Herzschuh U (2006) Paleo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quaternary Sicence Review 25(1/2):163–178

    Article  Google Scholar 

  • Heugenhauser S, Kaschnitz E, Schumacher P (2020) Development of an aluminum compound casting process-experiments and numerical simulations. Journal of Materials Processing Technology 279

  • Hodell D, Brenner M, Kanfoush S, Curtis J, Stoner J, Song XL, Wu Y, Whitmore T (1999) Paleoclimate of southwestern China for the past 50000 yr inferred from lake sediment records. Quatern Res 52(3):369–380

    Article  Google Scholar 

  • Hu YX, Chen ML, Zhou JW (2019) Numerical simulation of the entrainment effect during mass movement in high-speed debris avalanches. Arabian Journal of Geosciences 12

  • Hu YX, Yu ZY, Zhou JW (2020) Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River. Landslides 17:2317–2328

    Article  Google Scholar 

  • Jia HC, Chen F, Pan DH (2019) Disaster chain analysis of avalanche and landslide and the river blocking dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018. International of Journal of Environmental Research and Public Health 16

  • Jin HJ, Jin XY, He RX, Luo DL, Chang XL, Wang SL, Marchenko SS, Yang SZ, Yi CL, Li SJ, Harris SA (2019) Evolution of permafrost in china during the last 20 ka. Sci China Earth Sci 62:1207–1223

    Article  Google Scholar 

  • Kocaman S, Ozmen-Cagatay H (2015) Investigation of dam-break induced shock waves impact on a vertical wall. J Hydrol 525:1–12

    Article  Google Scholar 

  • Li JJ, Fang XM (1999) Uplift of the Tibetan Plateau and environmental changes. Chinee Science Bulletin 44:2117–2124

    Article  Google Scholar 

  • Li YC, Chen JP, Zhou FJ, Song SY, Zhang YW, Gu FF, Cao C (2020a) Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 368, 107351

  • Li YQ, Dong JY, Rui W (2020b) Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity. Microgravity Sci Technol 32:321–329

    Article  Google Scholar 

  • Lister GS, Kelts K, Zao CK, Yu JQ, Niessen F (1991) Lake Qinghai, China: closed-basin like levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Paleogeography, Paleoclimatology, Paleoecology 84(1/2/3/4):141–162

  • Li ZH, Wang Q, Zhou FJ, Li YC, Han XD, Mehmood Q, Cao C, Gu FF, Han MX, Chen JP (2021) Integrating an interferometric synthetic aperture radar technique and numerical simulation to investigate the Tongmai old deposit along the Sichuan-Tibet Railway. Geomorphology 377, 107586

  • Liu W, Hu K, Carling PA, Lai Z, Cheng T, Xu Y (2018) The establishment and influence of Baimakou paleo-dam in an upstream reach of the Yangze River, southeastern margin of the Tibetan Plateau. Geomorphology 321:167–173

    Article  Google Scholar 

  • Liu ZY, Su LJ, Zhang CL, Iqbal J, Hu BL, Dong ZB (2020) Investigation of the dynamic process of the Xinmo landslide using the discrete element method. Computers and Geotechnics 123, 103561

  • Mastbergen DR, Van Den Berg JH (2003) Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 50:625–637

    Article  Google Scholar 

  • Movahedi A, Kavianpour MR, Aminoroayaie Yamini O (2018) Evaluation and modeling scouring and sedimentation around downstream of large dams. Environmental Earth Sciences 77

  • Murton JB (2010) Identification of younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464(7289):740–743

    Article  Google Scholar 

  • Ouyang CJ, An HC, Zhou S, Wang ZW, Su PC, Wang DP, Cheng DX, She JX (2019) Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China. Landslides 16:1397–1414

    Article  Google Scholar 

  • Ozmen-Cagatay H, Kocaman S, Guzel H (2014) Investigation of dam-break flood waves in a dry channel with a hump. Journal of Hydro-Environment Research 8:304–315

    Article  Google Scholar 

  • Potyondy DO, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Rijn V (1984) Sediment transport. Part I: bed load transport. Journal of Hydraulic Engineering 110(10):1431–1456

  • Scaringi G, Fan X, Xu Q, Liu C, Ouyang C, Domènech G, Yang F, Dai L (2018) Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide, Sichuan. China Landslides 15(7):1359–1375

    Article  Google Scholar 

  • Shamohamadi B, Mehboudi A (2016) Analyzing parameters influencing scour bed in confluence channels using Flow3D numerical model. Civil Engineering Journal 2(10):529–537

    Article  Google Scholar 

  • Swanson FJ, Oyagi N, Tominaga M (1986) Landslide dams in Japan. Landslide Dams: Processes, Risk, and Mitigation, ASCE, pp 131–145

  • Tacconi Stefanelli C, Catani F, Casagli N (2015) Geomorphological investigations on landslide dams. Geoenvironmental Disasters 2:21

    Article  Google Scholar 

  • Tacconi Stefanelli C, Vilímek V, Emmer A, Catani F (2018) Morphological analysis and features of the landslide dams in the Cordillera Blanca, Peru. Landslides 15:507–521

    Article  Google Scholar 

  • Wang PF, Chen J, Dai FC, Long W, Xu C, Sun JM, Cui ZJ (2014) Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: implications to Holocene tectonic perturbations. Geomorphology 217:203–213

    Article  Google Scholar 

  • Wang HL, Liu SQ, Xu WY, Yan L, Qu X, Xie WC (2020) Numerical investigation on the sliding process and deposit feature of an earthquake-induced landslide: a case study. Landslides 17(11):2671–2682

    Article  Google Scholar 

  • Wei JB, Zhao Z, Xu C, Wen Q (2019) Numerical investigation of landslide kinetics for the recent mabian landslide (Sichuan, China). Landslides 16:2287–2298

    Article  Google Scholar 

  • Wolter A, Gischig V, Stead D, Clague JJ (2016) Investigation of geomorphic and seismic effects on the 1959 Madison Canyon, Montana, landslide using an integrated field, engineering geomorphology mapping, and numerical modelling approach. Rock Mech Rock Eng 49:2479–2501

    Article  Google Scholar 

  • Wu JH, Lin WK, Hu HT (2018) Post-failure simulations of a large slope failure using 3DEC: the Hsien-du-shan slope. Eng Geol 242:92–107

    Article  Google Scholar 

  • Wu QL, Zhao ZJ, Liu L, Granger DE, Wang H, Cohen DJ, Wu XH, Ye ML, Bar-Yosef O, Lu B, Zhang J, Zhang PZ, Yuan DY, Qi WY, Cai LH, Bai SB (2016) Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty. Science (american Association for the Advancement of Science) 353(6299):579–582

    Article  Google Scholar 

  • Yin YP, Huang BL, Liu GN, Wang SC (2015a) Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir, China. Environmental Earth Sciences 74:2595–2607

    Article  Google Scholar 

  • Yin YP, Huang BL, Chen XT, Liu GN, Wang SC (2015b) Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides 12:355–364

    Article  Google Scholar 

  • Yusuf F, Micovic Z (2020) Prototype-scale investigation of spillway cavitation damage and numerical modeling of mitigation options. J Hydraul Eng 146(2):04019057

    Article  Google Scholar 

  • Zhang YS, Chen JP, Tan C, Bao YD, Han XD, Yan JH, Mehnmood Q (2021) A novel approach to simulating debris flow runout via a three-dimensional CFD code: a case study of Xiaojia Gully. Bull Eng Geol Env 80(7):5293–5313

    Article  Google Scholar 

  • Zhan JW, Chen JP, Zhang W, Han XD, Sun XH, Bao YD (2018) Mass movements along a rapidly uplifting river valley: an example from the upper Jinsha River, southeast margin of the Tibetan Plateau. Environmental Earth Sciences 77:634

    Article  Google Scholar 

  • Zhao YF, Koizumi Y, Aoyagi K, Yamanaka K, Chiba A (2020) Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing. J Mater Sci Technol 50:162–170

    Article  Google Scholar 

  • Zhou JW, Xu FG, Yang XG, Yang YC, Lu PY (2016) Comprehensive analyses of the initiation and landslide-generated wave processes of the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir, China. Landslides 13:589–601

    Article  Google Scholar 

  • Zhou L, Fan XM, Xu Q, Yang F, Guo C (2019) Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha river. J Eng Geol 27(6):1395–1404 ((in Chinese with English abstracts))

    Google Scholar 

  • Zhuang Y, Yin YP, Xing AG, Jin KP (2020) Combined numerical investigation of the Yigong rock slide-debris avalanche and subsequent dam-break flood propagation in Tibet, China. Landslides 17:2217–2229

    Article  Google Scholar 

  • Zhu C, Yu SY, Lu CC (1997) The study of Holocene environmental archaeology and extreme flood disaster in the Three Gorges of the Changjiang River and the Jianghan Plain. Acta Geogr Sin 3:78–88 ((in Chinese with English abstracts))

    Google Scholar 

  • Zou Z, Tang H, Xiong C, Su A, Robert E (2017) Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China. Geomorphology 295:1–15

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 41941017, U1702241), the National Key Research and Development Program of China (grant no. 2018YFC1505301). The authors would like to thank the editor and anonymous reviewers for their comments and suggestions which helped a lot in making this paper better.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, J., Zhou, F. et al. Combined numerical investigation of the Gangda paleolandslide runout and associated dam breach flood propagation in the upper Jinsha River, SE Tibetan Plateau. Landslides 19, 941–962 (2022). https://doi.org/10.1007/s10346-021-01768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01768-5

Keywords

Navigation