Skip to main content
Log in

Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Information about the long-term spatiotemporal evolution of landslides can improve our understanding of the landslide development process and can help prevent landslide disasters. However, few studies have been devoted to the pre- and post-failure spatiotemporal evolution process and pattern of landslides. Therefore, we studied the pre- and post-failure geomorphic changes and spatiotemporal evolution of the 2019 Jiangou landslide based on field investigations, interferometric synthetic aperture radar (InSAR), unmanned aerial vehicle (UAV) observations, and remote sensing techniques. The results show that the volume of the deposition of the Jiangou landslide is less than the depletion volume, which means the remaining landslide materials were washed away when the dammed lake collapsed. Moreover, the InSAR technique has an advantage in terms of the retrieval of pre- and post-failure creep deformation. Our analysis suggests that the Jiangou landslide has experienced long-term creep. Potential landslide risks still exist after the previous failure event. Furthermore, we found that the pre- and post-failure spatiotemporal deformation processes and evolutionary patterns of the landslide are different. The pre-failure evolutionary pattern of the landslide is a progressive failure mode, while the post-failure evolutionary pattern is a retrogressive failure mode. This evolution provides a reference for local governments to further monitor or take effective prevention measures against future landslide failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Ao M, Zhang L, Shi X, Liao M, Dong J (2019) Measurement of the three-dimensional surface deformation of the Jiaju landslide using a surface-parallel flow model. Remote Sensing Letters 10(8):776–785

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  • Chen X, Cui Y (2017) The formation of the Wulipo landslide and the resulting debris flow in Dujiangyan City, China. J Mt Sci 14(6):1100–1112

    Article  Google Scholar 

  • China Natural Resources News (2020) Elimination of dangerous situation of Jiangou dammed lake in Haidong, Qinghai Province. http://www.iziran.net/difanglianbo/20200811_126602.shtml/ August 11th

  • Dai K, Xu Q, Li Z, Tomas R, Fan X, Dong X, Li W, Zhou Z, Gou J, Ran P (2019) Post-disaster assessment of 2017 catastrophic Xinmo landslide (China) by spaceborne SAR interferometry. Landslides 16(6):1189–1199

    Article  Google Scholar 

  • Derbyshire E (2001) Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth Sci Rev 54(1):231–260

    Article  Google Scholar 

  • Dong J, Zhang L, Tang M, Liao M, Xu Q, Gong J, Ao M (2018) Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China. Remote Sens Environ 205:180–198

    Article  Google Scholar 

  • Fan X, Xu Q, Scaringi G, Dai L, Li W, Dong X, Zhu X, Pei X, Dai K, Havenith H (2017) Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 14(6):2129–2146

    Article  Google Scholar 

  • Fan X, Xu Q, Scaringi G (2018) Brief communication: post-seismic landslides, the tough lesson of a catastrophe. Nat Hazards Earth Syst Sci 18(1):397–403

    Article  Google Scholar 

  • Fan X, Xu Q, Alonso-Rodriguez A, Subramanian S, Li W, Zheng G, Dong X, Huang R (2019) Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides 16(5):1003–1020

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. Transactions on Geoscience and Remote Sensing 39(1):8–20

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazard Earth Sys 18(8):2161–2181

    Article  Google Scholar 

  • Gong Y (2018) Evaluation of geological environment suitability in Ledu area, Qinghai Province. Chang’an University

  • Hamill D, Buscombe D, Wheaton J (2018) Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery. PLoS One 13(3):e0194373. https://doi.org/10.1371/journal.pone.0194373

    Article  Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35(16):L16302

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):L23611

    Article  Google Scholar 

  • Hu S, Qiu H, Pei Y, Cui Y, Xie W, Wang X, Yang D, Tu X, Zou Q, Cao P, Cao M (2019) Digital terrain analysis of a landslide on the loess tableland using high-resolution topography data. Landslides 16(3):617–632

    Article  Google Scholar 

  • Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N (2018) The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 15(1):123–133

    Article  Google Scholar 

  • Liu X, Zhao C, Zhang Q, Peng J, Zhu W, Lu Z (2018) Multi-temporal loess landslide inventory mapping with C-, X- and L-band SAR datasets—a case study of Heifangtai loess landslides, China. Remote Sens 10(11):1756

    Article  Google Scholar 

  • Liu Z, Qiu H, Ma S, Yang D, Pei Y, Du C, Sun Y, Hu S, Zhu Y (2021) Surface displacement and topographic change analysis of the Changhe landslide on September 14, 2019. China Landslides 18:1–13. https://doi.org/10.1007/s10346-021-01626-4

    Article  Google Scholar 

  • Ma S, Qiu H, Hu S, Yang D, Liu Z (2021) Characteristics and geomorphology change detection analysis of the Jiangdingya landslide on July 12, 2018, China. Landslides 18:383–396

    Article  Google Scholar 

  • Meisina C, Zucca F, Fossati D, Ceriani M, Allievi J (2006) Ground deformation monitoring by using the permanent scatterers technique: the example of the Oltrepo Pavese (Lombardia, Italy). Eng Geol 88(3–4):240–259

    Article  Google Scholar 

  • Meng Q, Li W, Raspini F, Xu Q, Peng Y, Ju Y, Zheng Y, Casagli N (2020) Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: a case study in Hongheyan, Gansu Province. Northwest China Landslides 18:251–265. https://doi.org/10.1007/s10346-020-01490-8

    Article  Google Scholar 

  • Necsoiu M, Hooper DM (2009) Use of emerging InSAR and LiDAR remote sensing technologies to anticipate and monitor critical natural hazards. Building safer communities—risk governance, spatial planning and responses to natural hazards. 58: NATO Science for Peace and Security, Series E: Human and Societal Dynamics. U. Fra Paleo:246–267. https://doi.org/10.3233/978-1-60750-046-9-246

  • Necsoiu M, McGinnis R, Hooper D (2014) New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques. Landslides 11(6):1141–1153

    Article  Google Scholar 

  • Peng D, Xu Q, Liu F, He Y, Zhang S, Qi X, Zhao K, Zhang X (2017) Distribution and failure modes of the landslides in Heitai terrace, China. Eng Geol 236:97–110

    Article  Google Scholar 

  • People’s Government of Ledu District, Haidong City (2019) Overview of economic and social development in Ledu district in 2018. http://www.ledu.gov.cn/html/1994/369403.html July 12th, 2020

  • Petley DN (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi A, Hu S, Wang X, Zhang Y, He Y (2017) Influence of topography and volume on mobility of loess slides within different slip surfaces. Catena 157:180–188

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi A, Hu S, Wang X, Zhang Y (2018) The effects of slope length and slope gradient on the size distributions of loess slides: field observations and simulations. Geomorphology 300:69–76

    Article  Google Scholar 

  • Qiu H, Cui Y, Pei Y, Yang D, Hu S, Wang X, Ma S (2020) Temporal patterns of nonseismically triggered landslides in Shaanxi Province China. Catena 187:104356. https://doi.org/10.1016/j.catena.2019.104356

    Article  Google Scholar 

  • Qu F, Qiu H, Sun H, Tang M (2020) Post-failure landslide change detection and analysis using optical satellite Sentinel-2 images. Landslides 18:447–455. https://doi.org/10.1007/s10346-020-01498-0

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics Felsmechanik Mécanique des Roches 5(4):231–236

    Article  Google Scholar 

  • Shi X, Xu Q, Zhang L, Zhao K, Dong J, Jiang H, Liao M (2019) Surface displacements of the Heifangtai terrace in Northwest China measured by X and C-band InSAR observations. Eng Geol 259:105181

    Article  Google Scholar 

  • Squarzoni G, Bayer B, Franceschini S, Simoni A (2020) Pre- and post-failure dynamics of landslides in the Northern Apennines revealed by space-borne synthetic aperture radar interferometry (InSAR). Geomorphology 369:107353. https://doi.org/10.1016/j.geomorph.2020.107353

    Article  Google Scholar 

  • Sun Q, Hu J, Zhang L, Ding X (2016) Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets: the Zhouqu case study, China. Remote Sens 8(11):908

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138

    Article  Google Scholar 

  • Weber M, Pasternack G (2017) Valley-scale morphology drives differences in fluvial sediment budgets and incision rates during contrasting flow regimes. Geomorphology 288:39–51

    Article  Google Scholar 

  • Wheaton J (2014) Trends and challenges in geomorphic change detection. Retrieved from https://www.researchgate.net/publication/324189730. Accessed 5 Nov 2017

  • Wheaton J (2016) Errors & uncertainty: how can we incorporate or estimate errors and uncertainties in our measurements of connectivity? Retrieved from https://www.researchgate.net/publication/303502345. Accessed 5 Nov 2017

  • Wheaton J, Brasington J, Darby S, Sear D (2010) Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf Process Landf 35(2):136–156

    Google Scholar 

  • Wheaton J, Brasington J, Darby S, Kasprak A, Sear D, Vericat D (2013) Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel-bed river. J Geophys Res Earth Surf 118(2):759–779

    Article  Google Scholar 

  • Yazici B, Gormus E (2020) Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: a case study in Artvin dam area, in Turkey. Geocarto International:1–19

  • Zhang M, Liu J (2010) Controlling factors of loess landslides in western China. Environ Earth Sci 59(8):1671–1680

    Article  Google Scholar 

  • Zhang Y, Meng X, Chen G, Qiao L, Zeng R, Chang J (2016) Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 13(5):1273–1284

    Article  Google Scholar 

  • Zhang Y, Meng X, Jordan C, Novellino A, Dijkstra T, Chen G (2018) Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 15(7):1299–1315

    Article  Google Scholar 

  • Zhang Y, Meng X, Dijkstra T, Jordan C, Chen G, Zeng R, Novellino A (2020) Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens Environ 241:111738

    Article  Google Scholar 

  • Zhao C, Lu Z (2018) Remote sensing of landslides—a review. Remote Sens 10(2):279

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (grant no. 2019QZKK0902), Natural ScienceBasic Research Program of Shaanxi(grant no. 2021JC-40), International Science & Technology Cooperation Program of China (grant no. 2018YFE0100100), Natural Science Basic Research Program of Shaanxi (grant no. 2021JC-40), National Natural Science Foundation of China (grant no. 41771539), Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDA20030301), and International Partnership Program of Chinese Academy of Sciences (grant no. 131551KYSB20160002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Qiu, H., Yang, D. et al. Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China. Landslides 18, 3475–3484 (2021). https://doi.org/10.1007/s10346-021-01714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01714-5

Keywords

Navigation