Skip to main content

Advertisement

Log in

Automatic identification of continuous or non-continuous evolution of landslides and quantification of deformations

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Nowadays, the 3D modelling of surfaces is widely used to provide point clouds in geosciences. To study the evolution of landslides, many point clouds are available but post-processing can be very computationally demanding, especially to analyze their dynamics. This paper proposes automatic tools to identify areas with continuous motion and those with non-continuous motion using a new continuous motion indicator. Displacements of continuously moving areas are computed by two “displacements” methods (the image correlation method and the Gefolki differential optical flow method), which are compared. The evolution of non-continuous motion areas is quantified by a distance metric. The developed method is applied on two sites with different deformation mechanisms and evolution speeds to test the ability to show the 3D spatial evolution of landslides. The comparison with instrumental data shows a good concordance between the calculated data and the reference data. The Gefolki differential optical flow method is considered as a relevant option for the image correlation method with the new continuous motion indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The images used are accessible on specific request.

References

  • Abellan A, Jaboyedoff M, Oppikofer T, Vilaplana J (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Natural Hazards and Earth System. Sciences. 9:365–372. https://doi.org/10.5194/nhess-9-365-2009

    Article  Google Scholar 

  • Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology. 119:162–171. https://doi.org/10.1016/j.geomorph.2010.03.016

    Article  Google Scholar 

  • Afeni TB, Cawood FT (2013) Slope monitoring using total station: what are the challenges and how should these be mitigated? South African Journal of Geomatics 2(1):41–53

    Google Scholar 

  • Alfonsi P, Durville JL, Pothérat P (2004) The morphology of deep-seated slope deformations: simple explanations or sophisticated interpretations? Proceedings of “Landslides: Evaluation and Stabilization”. IX International Symposium on Landslides, Lacerda, Ehrlich, pp 1111–1117

    Google Scholar 

  • Assilzadeh H, Levy JK, Wang X (2010) Landslide catastrophes and disaster risk reduction: a GIS framework for landslide prevention and management. Remote Sens 2010(2):2259–2273. https://doi.org/10.3390/rs2092259

    Article  Google Scholar 

  • Barbarella M, Fiani M (2013) Monitoring of large landslides by terrestrial laser scanning techniques: field data collection and processing. European Journal of Remote Sensing 46:126–151. https://doi.org/10.5721/EuJRS20134608

    Article  Google Scholar 

  • Barron JL, Fleet DJ, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vis 12:43–77. https://doi.org/10.1007/bf01420984

    Article  Google Scholar 

  • Benoit L, Briole P, Martin O, Thom C, Malet J-P, Ulrich P (2015) Monitoring landslide displacements with the Geocube wireless network of low-cost GPS. Eng Geol 195:111–121. https://doi.org/10.1016/j.enggeo.2015.05.020

    Article  Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans on Pattern Analysis and Machine Intelligence 14(2):239–256. https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  • Bitelli G, Dubbini M, Zanutta A (2004) Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B5):246–251

    Google Scholar 

  • Brigot G, Colin-Koeniguer E, Plyer A, Janez F (2016) Adaptation and evaluation of an optical flow method applied to coregistration of forest remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(7):2923–2939. https://doi.org/10.1109/JSTARS.2016.2578362

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301. https://doi.org/10.1007/s10346-010-0215-y

    Article  Google Scholar 

  • Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri L, Lu P (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron Disasters 4:9. https://doi.org/10.1186/s40677-017-0073-1

    Article  Google Scholar 

  • Casson B, Delacourt C, Allemand P (2005) Contribution of multi-temporal remote sensing images to characterize landslide slip surface – application to the La Clapière landslide (France). Nat Hazards Earth Syst Sci 5:425–437. https://doi.org/10.5194/nhess-5-425-2005

    Article  Google Scholar 

  • Chanut MA, Kasperski J, Dubois L, Dauphin S, Duranthon JP (2017) Quantification des déplacements par la méthode PLaS – application au glissement du Chambon. Rev Fr Géotech 150:4. https://doi.org/10.1051/geotech/2017009

    Article  Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  • Corominas J, Moya J, Lloret A, Gili JA, Silvano S (2000) Measurement of landslide displacements using a wire extensometer. Eng Geol 55(3):149–166. https://doi.org/10.1016/S0013-7952(99)00086-1

    Article  Google Scholar 

  • Crosta G, Agliardi F, Rivolta C, Alberti S, Dei Cas L (2017) Long-term evolution and early warning strategies for complex rockslides by real-time monitoring. Landslides 14:1615–1632. https://doi.org/10.1007/s10346-017-0817-8

    Article  Google Scholar 

  • Delacourt C, Allemand P, Casson B, Vadon H (2004) Velocity filed of the « La Clapière » landslide measured by the correlation of aerial and QuickBird satellite images. Geophys Res Lett 31:L15619. https://doi.org/10.1029/2004GL020193

    Article  Google Scholar 

  • Desrues M, Malet JP, Brenguier O, Point J, Stumpf A, Lorier L (2019) TSM—Tracing Surface Motion: a generic toolbox for analyzing ground-based image time series of slope deformation. Remote Sens 11(19):2189. https://doi.org/10.3390/rs11192189

    Article  Google Scholar 

  • Dubois L, Chanut MA, Duranthon JP (2014) Amélioration continue des dispositifs d’auscultation et de surveillance intégrés dans le suivi du versant instable des Ruines de Sechilienne. Géologues. 182:50–55

    Google Scholar 

  • Dubois L, Dauphin S, Rul G (2016) Le glissement du Chambon : évolution du phénomène et gestion de crise. Rev Fr Géotech 148:2. https://doi.org/10.1051/geotech/2016010

    Article  Google Scholar 

  • Duffy GP, Clarke JEH (2005) Application of spatial cross-correlation to detection of migration of submarine sand dunes. J Geophys Res 110:F04S12. https://doi.org/10.1029/2004JF000192

    Article  Google Scholar 

  • Duranthon JP, Effendiantz L (2004) Le versant instable des Ruines de Sechilienne – Point sur l’activité du phénomène et presentation du nouveau dispositive de gestion de la télésurveillance. Bulletin de liaison des Laboratoires des Ponts et Chaussées 252-253:29–48

    Google Scholar 

  • Durville JL, Effendiantz L, Pothérat P, Marchesini P (2004) The Sechilienne landslide. In: Bonnard C, Forlati F (eds) Scavia. Identification and mitigation of large landslide risks in Europe, Balkema, Rotterdam, The Netherlands, pp 253–269

    Google Scholar 

  • Evrard H, Gouin T, Benoit A, Duranthon J-P (1990) Sechilienne. Risques majeurs d’éboulements en masse: Point sur la surveillance du site. Bulletin de liaison des laboratoires des Ponts et Chaussées 165:7–16

    Google Scholar 

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2013) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 10:409–420. https://doi.org/10.1007/s10346-012-0329-5

    Article  Google Scholar 

  • Ghuffar S, Szekely B, Roncat A, Pfeifer N (2013) Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sens 5:2720–2745. https://doi.org/10.3390/rs5062720

    Article  Google Scholar 

  • Giacomini A, Thoeni K, Santise M, Diotri F, Booth S, Fityus S, Roncella R (2020) Temporal-spatial frequency rockfall data from open-pit highwalls using a low-cost monitoring system. Remote Sens 12:2459. https://doi.org/10.3390/rs12152459

    Article  Google Scholar 

  • Girardeau-Montaut D 2019 Cloud Compare Version 2.6.1 user manual. Available online: https://www.danielgm.net/cc/ (last consult: 11/06/2019)

  • Guglielmi Y, Vengeon JM, Bertrand C, Mudry J, Follacci P, Giraud A (2002) Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides). Bull Eng Geol Environ 61:311–324. https://doi.org/10.1007/s10064-001-0144-z

    Article  Google Scholar 

  • Helmstetter A, Garambois S (2010) Seismic monitoring of Sechilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115:1–15. https://doi.org/10.1029/2009JF001532

    Article  Google Scholar 

  • Hulo JF, Grussenmeyer P, Fares S (2009) Photogrammetry and dense stereo matching approach applied to the documentation of the cultural heritage site of Kilwa (Saudi Arabia). In: 22nd CIPA Symposium. Japan, Kyoto

    Google Scholar 

  • Intrieri E, Gigli G, Gracchi T, Nocentini M, Lombardi L, Mugnai F, Frodella W, Bertolini G, Carnevale E, Favalli M, Fornaciai A, Marturià Alavedra J, Mucchi L, Nannipieri L, Rodriguez-Lloveras X, Pizziolo M, Schina R, Trippi F, Casagli N (2018) Application of an ultra-wide band sensor-free wireless network for ground monitoring. Eng Geol 238:1–14. https://doi.org/10.1016/j.enggeo.2018.02.017

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28. https://doi.org/10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • Jaboyedoff M, Del Gaudio V, Derron M-H, Grandjean G, Jongmans D (2019) Characterizing and monitoring landslide processes using remote sensing and geophysics. Eng Geol 259:105167. https://doi.org/10.1016/j.enggeo.2019.105167

    Article  Google Scholar 

  • Janeras M, Jara J-A, Royán MJ, Vilaplana J-M, Buxó P (2017) Multi-technique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain). Eng Geol 219:4–20. https://doi.org/10.1016/j.enggeo.2016.12.010

    Article  Google Scholar 

  • Kaab A (2000) Photogrammetry for early recognition of high mountain hazards: new techniques and applications. Physics and Chemistry of the Earth Part B 25(9):765–770. https://doi.org/10.1016/S1464-1909(00)00099-X

    Article  Google Scholar 

  • Kasperski J, Delacourt C, Allemand P, Potherat P, Jaud M, Varrel E (2010) Application of a terrestrial laser scanner (TLS) to the study of the Sechilienne Landslide (Isère, France). Remote Sens 2:2785–2802. https://doi.org/10.3390/rs122785

    Article  Google Scholar 

  • Komac M, Holley R, Mahapatra P, van der Marel H, Bavec M (2015) Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 12:241–257. https://doi.org/10.1007/s10346-014-0482-0

    Article  Google Scholar 

  • Kovari K (1988) Methods of monitoring landslides, in: Proceedings of 5th International Symposium on Landslides. Balkema, Rotterdam, The Netherlands, pp 1421–1433

    Google Scholar 

  • Kromer RA, Abellán A, Hutchinson DJ, Lato M, Edwards T, Jaboyedoff M (2015) A 4D filtering and calibration technique for small-scale point cloud change detection with a terrestrial laser scanner. Remote Sens 7:13029–13052. https://doi.org/10.3390/rs71013029

    Article  Google Scholar 

  • Kromer RA, Abellán A, Hutchinson DJ, Lato M, Chanut MA, Dubois L, Jaboyedoff M (2017) Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Sechilienne landslide. Earth Surface Dynamics 5:293–310. https://doi.org/10.5194/esurf-5-293-2017

    Article  Google Scholar 

  • Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm Remote Sens 82:10–26. https://doi.org/10.1016/j.isprsjprs.2013.04.009

    Article  Google Scholar 

  • Le Breton M, Baillet L, Larose E, Rey E, Jaboyedoff M (2019) Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring. Eng Geol 250:1–10. https://doi.org/10.1016/j.enggeo.2018.12.027

    Article  Google Scholar 

  • Le Roux O, Jongmans D, Kasperski J, Schwartz S, Potherat P, Lebrouc V, Lagabrielle R, Meric O (2011) Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Eng Geol 120(1-4):18–31. https://doi.org/10.1016/j.enggeo.2011.03.004

    Article  Google Scholar 

  • Leprince S, Ayoub F, Klinger Y, Avouac JP (2007) Co-registration of optically sensed images and correlation (COSICorr): an operational methodology for ground deformation measurements. IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), Barcelona

  • Lowe DG (1999) Object recognition from local scale-invariant features. Proceedings of the Seventh. IEEE International Conference on Computer Vision:1150–1157

  • Lucas BD, Kanade T, 1981 An iterative image registration technique with an application to stereo vision. Proceedings of the 7th International Joint Conference on Artificial Intelligence. 121-130

  • Malet JP, Maquaire O, Calais E (2002) The use of GPS for the continuous monitoring of landslides. Application to the Super Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology. 43:33–54. https://doi.org/10.1016/S1251-8050(00)01396-3

    Article  Google Scholar 

  • Meric O, Garambois S, Jongmans D, Wathelet M, Chatelain JL, Vengeon JM (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne. Can Geotech J 42(4):1105–1115. https://doi.org/10.1139/t05-034

    Article  Google Scholar 

  • Montserrat O, Crosetto M (2007) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J Photogramm Remote Sens 63:142–154. https://doi.org/10.1016/j.isprsjprs.2007.07.008

  • Nagler T, Rott H, Kamelger A (2002) Analysis of landslides in Alpine areas by means of SAR interferometry, in: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Canada, Toronto

    Book  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron MH, Metzger R (2009) Characterization and monitoring of the Aknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019. https://doi.org/10.5194/nhess-9-1003-2009

    Article  Google Scholar 

  • Pierrot-Deseilligny M, Belveaux J, Choqueux G, Deveau M, Girod L 2015 MicMac, Apero and other beverages in a nutshell, ENSG — Marne-la-Vallée. Available online: https://micmac.ensg.eu/index.php/Accueil (last consult : 06/06/2019)

  • Remondino F, Guarnieri A, Vettore A (2004) 3D modeling of close-range objects: photogrammetry or laser scanning. Proceedings of SPIE - The International Society for Optical Engineering:216–225. https://doi.org/10.1117/12.586294

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375. https://doi.org/10.1144/1470-9236/05-008

    Article  Google Scholar 

  • Rosu AM, Pierrot-Deseilligny M, Delorme A, Binet R, Klinger Y (2015) Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac. ISPRS J Photogramm Remote Sens 100:48–59. https://doi.org/10.1016/j.isprsjprs.2014.03.002

    Article  Google Scholar 

  • Royán MJ, Abellán A, Jaboyedoff M, Vilaplana JM, Calvet J (2013) Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides. 11:697–709. https://doi.org/10.1007/s10346-013-0442-0

    Article  Google Scholar 

  • Rupnik E, Daakir M, Pierrot-Deseilligny M (2017) MicMac – a free, open-source solution for photogrammetry. Open Geospatial Data. Software and Standards 2:14. https://doi.org/10.1186/s40965-017-0027-2

    Article  Google Scholar 

  • Samodra G, Ramadhan MF, Sartohadi J, Setiawan MA, Christanto N, Sukmawijaya A (2020) Characterization of displacement and internal structure of landslides from multitemporal UAV and ERT imaging. Landslides 17:2455–2468. https://doi.org/10.1007/s10346-020-01428-0

    Article  Google Scholar 

  • Stumpf A, Malet JP, Allemand P, Pierrot-Deseilligny M, Skupinsk G (2015) Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology. 231:130–145. https://doi.org/10.1016/j.geomorph.2014.10.039

    Article  Google Scholar 

  • Stumpf A, Malet JP, Delacourt C (2017) Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens Environ 189:40–55. https://doi.org/10.1016/j.rse.2016.11.007

    Article  Google Scholar 

  • Tantianuparp P, Shi X, Zhang L, Balz T, Liao M (2013) Characterization of landslide deformations in Three Gorges area using multiple InSAR data stacks. Remote Sens 5:2704–2719. https://doi.org/10.3390/rs5062704

    Article  Google Scholar 

  • Travelletti J, Delacourt C, Allemand P, Malet JP, Schmittbuhl J, Toussaint R, Bastard M (2012) Correlation of multi-temporal ground-based optical images for landslide monitoring: application, potential and limitations. ISPRS J Photogramm Remote Sens 70:39–55. https://doi.org/10.1016/j.isprsjprs.2012.03.007

    Article  Google Scholar 

  • Travelletti J, Malet JP, Delacourt C (2014) Image-based correlation of Laser Scanning point cloud time series forlandslide monitoring. Int J Appl Earth Obs Geoinf 32:1–18. https://doi.org/10.1016/j.jag.2014.03.022

    Article  Google Scholar 

  • Vulliez C 2016 Apports des méthodes d’imagerie 3D pour la caractérisation et le monitoring du glissement rocheux de Sechilienne (Vallée de la Romanche, Isère, France), Lausanne

  • Wang G, Joyce J, Phillips D, Shrestha R, Carter W (2013) Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 10:503–513. https://doi.org/10.1007/s10346-013-0400-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Risk group of the University of Lausanne, especially Michel Jaboyedoff, for providing us with two TLS scans of the Sechilienne landslide, scanned in July 2014 and June 2015. The authors also thank the local authorities for providing the measurements of the movements of the Chambon landslide automated total station of the Chambon landslide between August 2015 and October 2016.

Code availability (software application or custom code)

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Aurélie Chanut.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanut, MA., Gasc-Barbier, M., Dubois, L. et al. Automatic identification of continuous or non-continuous evolution of landslides and quantification of deformations. Landslides 18, 3101–3118 (2021). https://doi.org/10.1007/s10346-021-01709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01709-2

Keywords

Navigation